Abstract

We report an experimental analysis of attenuation and fluorescence (at low-power 750-nm excitation) spectra’ transformations in yttria-alumino-silicate fiber doped with Bismuth (Bi), which occur at higher than room, but not exceeding 700°C, temperatures. As well, we address impact of elevating temperature upon the fiber’s basic characteristics, such as fluorescence/resonant-absorption saturation, fluorescence lifetime, and pump-light backscattering, given by the presence of Bi-Al related active centers (BACs). The experimental data reveals dramatic impact of heating and high-temperature annealing in excess of 500…550°C on the fiber’s state-of-the-art, expressed as significant rise of resonant absorption, enhancement of BACs NIR fluorescence, and reduction of scattering loss. In the meantime, such microscopic parameters of the fiber as BACs fluorescence lifetime and saturation power are found to be kept almost unchanged in its post-annealed state as compared to the pristine one. Possible mechanisms responsible for the phenomena and advantages of utilizing temperature-treated fiber of such type for lasing/amplifying purposes are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effective room-temperature luminescence in annealed chromium-doped silicate optical fibers

Vladislav V. Dvoyrin, Valery M. Mashinsky, Vladimir B. Neustruev, Evgeny M. Dianov, Alexei N. Guryanov, and Andrei A. Umnikov
J. Opt. Soc. Am. B 20(2) 280-283 (2003)

Ce-doped and Ce/Au-codoped alumino-phospho-silicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching

A.V. Kir’yanov, S. Ghosh, M.C. Paul, Y.O. Barmenkov, V. Aboites, and N. S. Kozlova
Opt. Mater. Express 4(3) 434-448 (2014)

Influence of electron irradiation on optical properties of Bismuth doped silica fibers

Alexander V. Kir’yanov, Vladislav V. Dvoyrin, Valery M. Mashinsky, Nikolai N. Il’ichev, Nina S. Kozlova, and Evgueny M. Dianov
Opt. Express 19(7) 6599-6608 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
    [Crossref]
  2. E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).
    [Crossref]
  3. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [Crossref]
  4. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
    [Crossref]
  5. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
    [Crossref] [PubMed]
  6. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
    [Crossref]
  7. V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
    [Crossref]
  8. E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
    [Crossref]
  9. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
    [Crossref]
  10. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
    [Crossref] [PubMed]
  11. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
    [Crossref]
  12. D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
    [Crossref]
  13. I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).
    [Crossref] [PubMed]
  14. L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).
  15. D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of the bismuth-doped aluminosilicate fiber within the temperature range 300-1500 K,” in Proc. of ICONO/LAT (Moscow, Russia, June 2013), LAT-08 “Fiber Optics” (2013).
  16. D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
    [Crossref]
  17. A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
    [Crossref]
  18. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
    [Crossref]
  19. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
    [Crossref]
  20. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
    [Crossref]
  21. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
    [Crossref]
  22. M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
    [Crossref]
  23. B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
    [Crossref] [PubMed]
  24. G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
    [Crossref]
  25. K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
    [Crossref]
  26. S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
    [Crossref]
  27. E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).
    [Crossref]
  28. C. E. Lesher, “Self-diffusion in silicate melts: theory, observations, and applications magmatic systems,” Rev. Mineral. Geochem. 72(1), 269–309 (2010).
    [Crossref]
  29. V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
    [Crossref] [PubMed]
  30. H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
    [Crossref]
  31. C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
    [Crossref]
  32. K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
    [Crossref]
  33. H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
    [Crossref]
  34. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
    [Crossref] [PubMed]
  35. Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
    [Crossref] [PubMed]
  36. C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).
  37. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
    [Crossref] [PubMed]
  38. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
    [Crossref]

2015 (7)

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
[Crossref]

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).
[Crossref]

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
[Crossref] [PubMed]

2014 (4)

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
[Crossref]

2013 (1)

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

2012 (3)

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

2011 (7)

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
[Crossref]

H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
[Crossref]

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

2010 (3)

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

C. E. Lesher, “Self-diffusion in silicate melts: theory, observations, and applications magmatic systems,” Rev. Mineral. Geochem. 72(1), 269–309 (2010).
[Crossref]

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).
[Crossref] [PubMed]

2009 (5)

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

2008 (5)

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).
[Crossref]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
[Crossref] [PubMed]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

2007 (1)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Aboites, V.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Alyshev, S. V.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

Arai, Y.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

Arion, V.

Ban, C.

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

Barmenkov, Y.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Barmenkov, Y. O.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

Berwal, N.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

Bhadra, S.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Bhadra, S. K.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

Bigot, L.

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).
[Crossref] [PubMed]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Bouazaoui, M.

Bouwmans, G.

Bufetov, I. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Bulatov, L. I.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

Chen, D.

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

Chen, H.-H.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Cho, S.

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

Das, S.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Denisov, L. K.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Dhar, A.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

Dianov, E.

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

Dianov, E. M.

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
[Crossref]

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).
[Crossref]

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
[Crossref]

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).
[Crossref]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Douay, M.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Dult, M.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

Dvoretskii, D. A.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Dvorin, V. V.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

Dvoyrin, V. V.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

El Hamzaoui, H.

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Firstov, S. V.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Firstova, E. G.

Gao, D. N.

H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
[Crossref]

Guan, M.

Guo, H. W.

H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
[Crossref]

Gur’yanov, A. N.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Guryanov, A. N.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Halder, A.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

Hong, Z.

Hu, G.-Q.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Hughes, M. A.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[Crossref]

Il’ichev, N. N.

Kalita, M. P.

Kaundal, R. S.

K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
[Crossref]

Kaur, S.

K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
[Crossref]

Khonton, S.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

Khopin, V. F.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Kim, H.

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

Kir’yanov, A.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Kir’yanov, A. V.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Kishore, N.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

Koltashev, V. V.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

Kozlova, N. S.

Kundu, R. S.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

Kustov, E. F.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

Le Rouge, A.

Lerouge, A.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

Lesher, C. E.

C. E. Lesher, “Self-diffusion in silicate melts: theory, observations, and applications magmatic systems,” Rev. Mineral. Geochem. 72(1), 269–309 (2010).
[Crossref]

Limberger, H. G.

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

Lin, G.

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

Liu, B.-Q.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Lopatin, S. I.

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

Luo, F.

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

Ma, Z.

Mashinsky, V. M.

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011).
[Crossref] [PubMed]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

Medvedkov, O. I.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Mel’kumov, M. A.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

Melkumov, M. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

Mermet, A.

Morimoto, S.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

Nielsen, K. H.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Ohishi, Y.

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[Crossref]

Paul, M.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Paul, M. C.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

Peng, M.

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
[Crossref] [PubMed]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Plotnichenko, V. G.

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

Punia, R.

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Qiu, J.

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

Ramirez-Granados, D.

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

Razdobreev, I.

I. Razdobreev, H. El Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, “Optical properties of Bismuth-doped silica core photonic crystal fiber,” Opt. Express 18(19), 19479–19484 (2010).
[Crossref] [PubMed]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Riumkin, K. E.

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

Sahu, J.

Semjonov, S. L.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Shilov, A. L.

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

Shim, H.

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

Shubin, A. V.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

Shugurov, S. M.

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

Singh, K. J.

K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
[Crossref]

Smedskjaer, M. M.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Sokolov, V. O.

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study,” Opt. Mater. Express 5(1), 163–168 (2015).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

Stolyarova, V. L.

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

Sukhorukov, A. P.

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

Suzuki, T.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[Crossref]

Tan, D.

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

Teng, Y.

Truong, V. G.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

Umnikov, A. A.

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

Vel’miskin, V. V.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Wang, C.-Y.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Wang, H.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Wang, X. F.

H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
[Crossref]

Wondraczek, L.

Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, “Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers,” Opt. Express 23(9), 12423–12433 (2015).
[Crossref] [PubMed]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Xu, B.

Yang, K.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Yie, H.

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

Yoo, S.

Yue, Y.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Zhang, Q.

Zhang, Z.-J.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Zhao, J.-T.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Zhao, Q.

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

Zhao, Y.

Zhou, J.

Zhou, S.

Zhu, L.-L.

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

Zlenko, A. S.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[Crossref]

Bull. Russ. Acad, Sci. (1)

L. I. Bulatov, V. M. Mashinsky, V. V. Dvorin, E. F. Kustov, E. M. Dianov, and A. P. Sukhorukov, “Structure of absorption and luminescence bands in aluminosilicate optical fibers doped with bismuth,” Bull. Russ. Acad, Sci. 72(12), 1655–1660 (2008).

Ceram. Int. (1)

H. Shim, S. Cho, H. Yie, and H. Kim, “Crystallization behavior of bismuth oxide nano-glass studied via in situ transmission electron microscopy,” Ceram. Int. 41(2), 2196–2201 (2015).
[Crossref]

IEEE J. Lightw. Technol. (1)

A. V. Kir’yanov, A. Halder, Y. O. Barmenkov, S. Das, A. Dhar, S. K. Bhadra, V. G. Plotnichenko, V. V. Koltashev, and M. C. Paul, “Distribution of bismuth and bismuth-related centers in core area of Y-Al-SiO2:Bi fibers,” IEEE J. Lightw. Technol. 33(17), 3649–3659 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain and laser action in bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903815 (2014).
[Crossref]

IEEE Photonics J. (1)

D. Ramirez-Granados, Y. Barmenkov, A. Kir’yanov, V. Aboites, M. Paul, A. Halder, S. Das, A. Dhar, and S. Bhadra, “The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing,” IEEE Photonics J. 7(4), 6802112 (2015).
[Crossref]

J. Mol. Struct. (1)

M. Dult, R. S. Kundu, N. Berwal, R. Punia, and N. Kishore, “Manganese modified structural and optical properties of bismuth silicate glasses,” J. Mol. Struct. 1089, 32–37 (2015).
[Crossref]

J. Non-Cryst. Solids (4)

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, and J. Qiu, “Linear and nonlinear optical properties of glasses doped with Bi nanoparticles,” J. Non-Cryst. Solids 357(11–13), 2312–2315 (2011).
[Crossref]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

C.-Y. Wang, G.-Q. Hu, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, K. Yang, and J.-T. Zhao, “Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content,” J. Non-Cryst. Solids 363(1), 84–88 (2013).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[Crossref]

Laser Phys. Lett. (2)

E. M. Dianov, “Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results,” Laser Phys. Lett. 12(9), 095106 (2015).
[Crossref]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Light Sci. Appl. (1)

E. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

Opt. Express (6)

Opt. Mater. (2)

S. Khonton, S. Morimoto, Y. Arai, and Y. Ohishi, “Redox equilibrium and NIR luminescence of Bi2O3–containing glasses,” Opt. Mater. 31(8), 1262–1268 (2009).
[Crossref]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

E. M. Dianov, “Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,” Proc. SPIE 6890, 6890H (2008).
[Crossref]

Quantum Electron. (3)

E. M. Dianov, S. V. Firstov, S. V. Alyshev, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Gur’yanov, O. I. Medvedkov, and M. A. Mel’kumov, “A new bismuth-doped fibre laser, emitting in the range 1625–1775 nm,” Quantum Electron. 44(6), 503–504 (2014).
[Crossref]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibers in the temperature range 300-1500 K,” Quantum Electron. 42(9), 762–769 (2012).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron. 41(12), 1080–1082 (2011).
[Crossref]

Radiat. Phys. Chem. (1)

K. J. Singh, S. Kaur, and R. S. Kaundal, “Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems,” Radiat. Phys. Chem. 96, 153–157 (2014).
[Crossref]

Rapid Commun. Mass Spectrom. (1)

V. L. Stolyarova, A. L. Shilov, S. I. Lopatin, and S. M. Shugurov, “High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.,” Rapid Commun. Mass Spectrom. 28(7), 801–810 (2014).
[Crossref] [PubMed]

Rev. Mineral. Geochem. (1)

C. E. Lesher, “Self-diffusion in silicate melts: theory, observations, and applications magmatic systems,” Rev. Mineral. Geochem. 72(1), 269–309 (2010).
[Crossref]

Sci. Sin. (1)

H. W. Guo, X. F. Wang, and D. N. Gao, “Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics,” Sci. Sin. 43(3), 353–362 (2011).
[Crossref]

Other (2)

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared luminescence enhancement by UV-Irradiation of H2-loaded BiAl-doped fiber,” in Proc. of ECOC-2009 (Vienna, Austria, September 2009), 6.1.5 (2009).

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of the bismuth-doped aluminosilicate fiber within the temperature range 300-1500 K,” in Proc. of ICONO/LAT (Moscow, Russia, June 2013), LAT-08 “Fiber Optics” (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Spectra of absorption (curve 1) and fluorescence at 1.06 µm pumping (curve 2) of Bi-1 fiber, measured at RT; in both cases short pieces (2…5 cm) of the fiber were under tests. The cutoff features, shown by the vertical red arrows, are addressed in the text.

Fig. 2
Fig. 2

Experimental arrangements employed at measurements of (a) absorption and fluorescence, including lifetime, and (b) back-fluorescence and backscattering (crosses indicate splices); (c) normalized LED’s emission spectrum; (d) multiplexer transmission spectra between the port spliced with SMF-28 fiber (refer to 2(b)) and the port used as output 1 (curve 1) and the port used for connecting with LED (curve 2).

Fig. 3
Fig. 3

Dependences of IA establishing in Bi-1 fiber on current temperature T at heating from RT to 700°C, measured in resonant-absorption bands I, II, and III (represented in main-frame by three blue curves, labelled accordingly). Inset demonstrates the changes in absorption spectra of Bi-1 fiber during heating, “snapshotted” at T = 405°C (grey curve 1), 625°C (green curve 2), and 700°C (magenta curve 3). Lengths of Bi-1 fiber samples were 6 cm. The dashed and dotted-dashed lines guide to the eye slopes of the dependences as per the presence of the two stages (see text).

Fig. 4
Fig. 4

Dependences of IA established in Bi-1 fiber at RT, as the result of completing cycles of heating/annealing/cooling to RT, on annealing temperature T*. As in Fig. 3, in main-frame are shown the data obtained in peaks of resonant-absorption bands I, II, and III (represented by three red curves, labelled accordingly). Inset demonstrates the changes in the resultant (after annealing) absorption spectra of Bi-1 fiber, “snapshotted” at T* = 500°C (olive curve 1), 550°C (blue curve 2), 625°C (green curve 3), and 700°C (magenta curve 4) (measured at RT). Black curve 5 in the inset presents, for comparison, the attenuation spectrum of pristine Bi-1 fiber at RT. Lengths of Bi-1 fiber samples were 6 cm. The dashed and dotted-dashed lines guide to the eye slopes of the dependences as per the presence of the two stages (see text).

Fig. 5
Fig. 5

(a) Dependences of Bi-1 fiber’s attenuation, taken in its pristine (before thermal treatment, blue curve 1) and posterior to annealing at T* = 700°C (i.e. after completing a cycle of heating it to 700°C, followed by annealing, cooling to RT, and thermal relaxing), on annealing temperature T*. The BACs-related resonant-absorption bands I to III are labelled near the curves. Length of Bi-1 fiber sample tested was 2 cm. The specifications of the features represented by the vertical black / red arrows and by the dashed lines are addressed in the text. (b) Cross-sectional views of Bi-1 fiber (length, 10 cm) cuts, obtained at WL illuminations before (left photo) and after (right photo) completing the whole of thermal treatment: refer to spectra 1 and 2 in main-frame of the figure.

Fig. 6
Fig. 6

Examples of IA-spectra measured in the spectral interval, matching resonant-absorption bands I and II, in Bi-1 fibers, obtained at current temperatures at heating (T) and after applying cycles of heating/annealing/cooling, viz. at annealing temperatures T*. The blue and red spectra correspond to different T- and T*-values, exemplified by 500°C (a), 550°C (b), 625°C (c), and 700°C (d). Lengths of Bi-1 fiber samples were 6 cm. The black and grey arrows show IA-widths in bands I and II.

Fig. 7
Fig. 7

Normalized dependence of pump-light (750 nm) transmission against temperature T during heating (TUP: black symbols), after 2-h. annealing at T = 700°C (right-hand red symbol), and after annealing, cooling to RT, and thermal relaxation during 24 h. (i.e., T* = 700°C) (TDOWN: left-hand red symbol). Normalization was done to the transmission of pristine Bi-1 fiber. Pump power at 750 nm, PP = 4.4 mW, was measured at fiber’s input. Inset demonstrates behavior of pump’s spectral line in the course of the measurements.

Fig. 8
Fig. 8

NIR fluorescence spectra of Bi-1 fiber measured at different temperatures T (labeled near each curve) at heating from RT to 700°C, in “forward geometry”. The black spectrum corresponds to pristine state of the fiber while the three violet spectra – to T = 700°C just after establishing this temperature and after 1 and 2 h. of annealing. The grey spectrum, measured at RT, corresponds to the case when Bi-1 sample has passed a whole cycle of heating to 700°C, annealing during 2 h. at this temperature, cooling to RT, and thermal relaxation for 24 h. (i.e. T* = 700°C). The arrows guide to the eye the most appreciable trends that NIR fluorescence obeys during thermal treatment. Pump power at 750 nm was fixed at PP = 4.5 mW.

Fig. 9
Fig. 9

Dependences of (a) integrated NIR fluorescence power and (b) pump power saturating 1.15-µm fluorescence versus temperature T, for Bi-1 fiber. Specified are the processes of heating (TUP: black symbols), 1-h. annealing at T = 700°C (right-hand red symbols), and posterior cooling to RT and thermal relaxation during 24 h. (i.e. T* = 700°C) (TDOWN: left-hand red symbols “1”). Red symbols “2” and “3” designate the corresponding parameters’ values, measured using the fibers annealed at T* = 700°C, re-heated to lower than T = 500°C temperatures. Pump power at 750 nm PP was varied at measurements of NIR fluorescence saturation (b) from a few µW to 4.5 mW.

Fig. 10
Fig. 10

VIS to NIR fluorescence spectra of Bi-1 fiber measured at different temperatures T (their values are provided in the legend in top-right corner) at heating from RT to 700°C, in “backward geometry”. The black spectrum corresponds to pristine state of the fiber while the two violet curves demonstrate the spectra obtained at T = 700°C just after establishing this temperature and after 1 h. of annealing. The grey spectrum, measured at RT, corresponds to the case when Bi-1 sample has passed a whole cycle of heating to 700°C, annealing during 1 h. at this temperature, cooling to RT, and thermal relaxation for 24 h. (i.e. T* = 700°C). The arrows guide to the eye the most appreciable trends that VIS and NIR fluorescence obeys during thermal treatment. Pump power at 750 nm (its spectral component is asterisked in the figure) was fixed at PP = 2.1 mW.

Fig. 11
Fig. 11

Normalized dependences of (a) backscattering at pump wavelength (750 nm) and (b) VIS back-fluorescence (centered at 820 nm) powers against temperature T during heating (TUP: black symbols), after 2-h. annealing at T = 700°C (right-hand red symbols), and after annealing, cooling to RT, and thermal relaxation during 24 h. (i.e. T* = 700°C) (TDOWN: left-hand red symbols). Normalization was done to the plotted parameters’ values measured using pristine Bi-1 samples; pump power at 750 nm was kept at PP = 2.1 mW.

Fig. 12
Fig. 12

Dependences of (a) NIR (centered at 1.15 µm) and (b) VIS (centered at 820 nm) fluorescence lifetimes against temperature T during heating (TUP: black symbols), after 1-h. annealing at T = 700°C (right-hand red symbols), and after annealing, cooling to RT, and thermal relaxation during 24 h. (i.e. T* = 700°C) (TDOWN: left-hand red symbols).

Fig. 13
Fig. 13

Examples of IA-spectra measured in the spectral interval, matching resonant-absorption bands I and II, in Bi-2 fibers, obtained at current temperatures at heating (T) and after applying cycles of heating/annealing/cooling, viz. at annealing temperatures T*. The blue and red spectra correspond to T- and T*-values, exemplified by 550°C (a) and 700°C (b). Lengths of Bi-2 fiber samples were 2 cm. The black and grey arrows show IA-widths in bands I and II.

Fig. 14
Fig. 14

Dependences of IA established in Bi-2 fiber, as the result of completing cycles of heating/annealing/cooling to RT, on annealing temperature T*. In main-frame are shown the data obtained in peaks of resonant-absorption bands I, II, and III (represented by the three red curves, labelled accordingly). Inset demonstrates the changes in the resultant (after annealing) absorption spectra of Bi-2 fiber, “snapshotted” at T* = 500°C (olive curve 1), 550°C (blue curve 2), 625°C (green curve 3), and 700°C (magenta curve 4) (measured at RT). Black curve 5 presents, for comparison, the attenuation spectrum of pristine Bi-2 fiber. Lengths of Bi-2 fiber samples were 2 cm. The dashed and dotted-dashed lines guide to the eye slopes of the dependences as per the presence of the two stages (see text).

Fig. 15
Fig. 15

Dependences of relative (as compared to pristine state, APR) absorption, IA/APR, established in Bi-1 (olive symbols) and Bi-2 (blue symbols) fibers versus current temperature T, at heating from RT to 700°C, measured in resonant-absorption bands I (open symbols) and II (filled symbols). Lengths of Bi-1 and Bi-2 fiber samples were 6 and 2 cm, respectively. The dashed and dotted-dashed lines show the characteristic essences obeyed by the dependences.

Fig. 16
Fig. 16

NIR fluorescence spectra of Bi-2 fiber measured at different temperatures T (labeled near each curve) at heating from RT to 700°C, in “forward geometry”. The black spectrum corresponds to pristine fiber while the two violet spectra – to T = 700°C just after establishing this temperature and after 1 h. of annealing. The grey spectrum, measured at RT, corresponds to the case when Bi-2 sample has passed a whole cycle of heating to 700°C, annealing during 2 h. at this temperature, cooling to RT, and thermal relaxation for 24 h. (i.e. T* = 700°C). The arrows guide to the eye the most appreciable trends that NIR fluorescence obeys during thermal treatment. Pump power at 750 nm was fixed at PP = 4.5 mW.

Fig. 17
Fig. 17

Dependences of (a) integrated NIR fluorescence power and (b) pump power saturating 1.15-µm fluorescence versus temperature T, for Bi-2 fiber. Specified are the processes of heating (TUP: black symbols), 1-h. annealing at T = 700°C (right-hand red symbols), and posterior cooling to RT and thermal relaxation during 24 h. (i.e. T* = 700°C) (TDOWN: left-hand red symbols). Pump power at 750 nm PP was varied at measurements of NIR fluorescence saturation (b) from a few µW to 4.5 mW.

Fig. 18
Fig. 18

Normalized dependences of backscattering at pump wavelength (750 nm) against temperature T, obtained with Bi-1 (olive curve) and Bi-2 (blue curve) fibers, during heating (TUP), after 1-h. annealing at T = 700°C (right-hand red symbols), and after annealing, cooling to RT, and thermal relaxation during 24 h. (i.e. T* = 700°C) (TDOWN: left-hand red symbols). Normalization was done to backscattering signals, measured using pristine Bi-1/Bi-2 fibers. Lengths of Bi-1 and Bi-2 fibers were 8 and 4 cm, respectively; pump power at 750 nm was fixed at PP = 2.1 mW.

Fig. 19
Fig. 19

Experimental (normalized on the peak’s value, see red asterisk) Raman spectra of (a) Bi-1 and (b) Bi-2 fibers, obtained before thermal treatment (black curves 1) and after annealing at T* = 700°C (grey curves 2). Insets demonstrate zooms of the spectra, for the range 30…220 cm−1 (see images inside the blue circles and blue asterisks).

Metrics