Abstract

The effect of erbium concentration on spectroscopic properties of Er:CaF2 crystals was investigated. Two highest absorption cross-sections (σabs) at 967 nm were achieved in the 4at.% and 8at.% Er:CaF2 samples with the value of 0.22 × 10−20 cm2 and 0.23 × 10−20 cm2, respectively. And the 4at.% and 8at.% Er:CaF2 samples also had the highest emission cross-section (σem) at 2727 nm with the value about 0.67 × 10−20 cm2. Lifetime of 4I13/2 decreased faster than that of 4I11/2 with the increase of erbium concentration. Under laser diode (LD) pumping, the continuous-wave (CW) laser operations around 2.79 μm were demonstrated in the 4at.%, 8at.% and 11at.% Er:CaF2 samples. And the 4at.% Er:CaF2 sample had the best laser performance with a maximum output power of 0.282 W and a slop efficiency of 13.9%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal

Jiakang Chen, Dunlu Sun, Jianqiao Luo, Huili Zhang, Renqin Dou, Jingzhong Xiao, Qingli Zhang, and Shaotang Yin
Opt. Express 21(20) 23425-23432 (2013)

Dual function of Nd3+ in Nd,Er:LuYSGG crystal for LD pumped ~3.0 μm mid-infrared laser

Yan Wang, Jianfu Li, Zhaojie Zhu, Zhenyu You, Jinlong Xu, and Chaoyang Tu
Opt. Express 23(14) 18554-18562 (2015)

Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications

Ruosong Wang, Xiangwei Meng, Feixiang Yin, Yan Feng, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(8) 1127-1136 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).
  2. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref] [PubMed]
  3. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Express 19(5), A1082–A1087 (2011).
    [Crossref] [PubMed]
  4. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  5. Z. Zhu, J. Li, Z. You, Y. Wang, S. Lv, E. Ma, J. Xu, H. Wang, and C. Tu, “Benefit of Pr3+ ions to the spectral properties of Pr3+/Er3+:CaGdAlO4 crystal for a 2.7 μm laser,” Opt. Lett. 37(23), 4838–4840 (2012).
    [Crossref] [PubMed]
  6. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref] [PubMed]
  7. A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  8. B. J. Dinerman and P. F. Moulton, “3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
    [Crossref] [PubMed]
  9. C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
    [Crossref]
  10. J. Šulc, M. Němec, R. Svejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
    [Crossref] [PubMed]
  11. T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
    [Crossref]
  12. T. Jensen, A. Diening, G. Huber, and B. H. Chai, “Investigation of diode-pumped 2.8-microm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
    [Crossref] [PubMed]
  13. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
    [Crossref] [PubMed]
  14. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
    [Crossref] [PubMed]
  15. F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
    [Crossref]
  16. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
    [Crossref]
  17. Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
    [Crossref] [PubMed]
  18. K. S. Wentsch, B. Weichelt, S. Günster, F. Druon, P. Georges, M. Abdou Ahmed, and T. Graf, “Yb:CaF2 thin-disk laser,” Opt. Express 22(2), 1524–1532 (2014).
    [Crossref] [PubMed]
  19. C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
    [Crossref]
  20. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [Crossref] [PubMed]
  21. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16(4), 258–260 (1991).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

2012 (1)

2011 (3)

2010 (1)

2007 (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2006 (1)

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

2002 (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

2001 (1)

1999 (1)

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

1996 (3)

1994 (1)

1991 (1)

1984 (1)

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Abdou Ahmed, M.

Alimov, O. K.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Androz, G.

Basiev, T. T.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Bernier, M.

Camy, P.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Cao, Y. X.

Caron, N.

Catlow, C. R.

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Chadwick, A. V.

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Chai, B. H.

Chen, D.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref] [PubMed]

Chen, J.

Dergachev, A. Yu.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Diening, A.

Dinerman, B. J.

Doroshenko, M. E.

Dou, R.

Doualan, J. L.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Druon, F.

Dubinskii, M.

Ernst, H.

Ertmer, W.

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref] [PubMed]

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Faucher, D.

Fedorov, P. P.

J. Šulc, M. Němec, R. Svejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
[Crossref] [PubMed]

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Ge, W. Y.

Georges, P.

Godard, A.

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Graf, T.

Greaves, G. N.

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Günster, S.

Hashida, M.

Hewak, D. W.

Hiigele, A.

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Hirokane, M.

Horbe, G.

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Hu, L.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Huang, F.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Huber, G.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

T. Jensen, A. Diening, G. Huber, and B. H. Chai, “Investigation of diode-pumped 2.8-microm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
[Crossref] [PubMed]

Jelínková, H.

Jensen, T.

Jiang, D. P.

Kanskar, M.

Kedlaya, D.

Konyushkin, V. A.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Kuznetsov, S. V.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Labbe, C.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Li, J.

Li, X.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Lin, H.

Liu, X.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Lubatschowski, H.

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref] [PubMed]

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Luo, J.

Lv, S.

Ma, E.

Ma, F. K.

Ma, J.

Miniscalco, W. J.

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Moncorge, R.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Moroney, L. M.

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Moulton, P. F.

Murakami, M.

Nemec, M.

Orlovskii, Yu. V.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Osiko, V. V.

J. Šulc, M. Němec, R. Svejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
[Crossref] [PubMed]

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Payne, D. N.

Petermann, K.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Peters, V.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Polyachenkova, M. V.

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Qian, L. J.

Qin, Z. P.

Quimby, R. S.

Sakabe, S.

Samson, B. N.

Sanamyan, T.

Schweizer, T.

Shimizu, S.

Su, L. B.

Šulc, J.

Sun, D.

Svejkar, R.

Thuau, M.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Tokita, S.

Tu, C.

Vallée, R.

Wang, H.

Wang, Y.

Weichelt, B.

Welling, H.

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref] [PubMed]

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Wentsch, K. S.

Will, G. F.

Xiao, J.

Xiao, Y.

Xie, G. Q.

Xu, J.

Yang, A.

Yin, S.

You, Z.

Yu, Y.

Yuan, P.

Zhang, H.

Zhang, J.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Zhang, Q.

Zhu, Z.

Ziolek, C.

C. R. Phys. (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Cryst. Res. Technol. (1)

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

J. Lumin. (1)

A. Hiigele, G. Horbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” J. Lumin. 125, 90–94 (1996).

Nature (1)

C. R. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(13), 601–604 (1984).
[Crossref]

Opt. Commun. (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 µm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1-3), 193–199 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (11)

Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
[Crossref] [PubMed]

T. Jensen, A. Diening, G. Huber, and B. H. Chai, “Investigation of diode-pumped 2.8-microm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
[Crossref] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
[Crossref] [PubMed]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

Z. Zhu, J. Li, Z. You, Y. Wang, S. Lv, E. Ma, J. Xu, H. Wang, and C. Tu, “Benefit of Pr3+ ions to the spectral properties of Pr3+/Er3+:CaGdAlO4 crystal for a 2.7 μm laser,” Opt. Lett. 37(23), 4838–4840 (2012).
[Crossref] [PubMed]

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref] [PubMed]

J. Šulc, M. Němec, R. Svejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
[Crossref] [PubMed]

B. J. Dinerman and P. F. Moulton, “3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
[Crossref] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[Crossref] [PubMed]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16(4), 258–260 (1991).
[Crossref] [PubMed]

Opt. Mater. (1)

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Quantum Electron. (1)

T. T. Basiev, Yu. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Yu. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+: SrF2 and Er3+: CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption coefficient of (ErxCa1-x)F2 (x = 0.2at.%, 1at.%, 3at.%, 4at.%, 8at.%, 11at.%, 13at.%) at room temperature.
Fig. 2
Fig. 2 The absorption cross-section at 799 nm (a), 1515 nm (b) and 967 nm (c). And variation tendency of absorption cross-section (red curve) and absorption coefficient (blue curve) in the insert and (d).
Fig. 3
Fig. 3 The emission cross-section of 2.7 μm band (a) and the variation tendency (b).
Fig. 4
Fig. 4 Decay curves of luminescence for both 4I13/2 (a), 4I11/2 (b) of (ErxCa1-x)F2 (x = 4at.%, 8at.%, 11at.%, 13at.%) at room temperature.
Fig. 5
Fig. 5 The calculated absorption cross-section and emission cross-section of 4at.% Er:CaF2 sample.
Fig. 6
Fig. 6 The gain cross-section for 4I11/2 to 4I13/2 transition of 4at.% Er:CaF2 sample.
Fig. 7
Fig. 7 Schematic of the experimental setup for 2.79 μm laser operation.
Fig. 8
Fig. 8 Output power versus absorbed pump power for CW laser operation of 4at.%, 8at.%, 11 at.% Er:CaF2 samples.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ e = λ 4 A rad 8πc n 2 × λI(λ) λI(λ)dλ ,
σ abs (λ)= σ em (λ)×( Zu Zl )exp[ (Ezlhc λ 1 ) KBT ],
σ G (λ)=P× σ em (λ)(1P)× σ abs (λ),

Metrics