Abstract

We demonstrate regular-type perovskite solar cells based on vertically grown Ni-doped ZnO nanorod arrays and doped P3HT for solar energy harvesting. PCBM was introduced between Ni-doped ZnO nanorod arrays and the perovskite layer to improve electron extraction, while P3HT doped with bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) was used as hole transporting layer. Three types of perovskite materials, including MAPbI3, (MA)x(FA)1-xPbI3, and (MA)y(GA)1-yPbI3, were used as light harvesting layers to exploit conversion efficiency of photovoltaic devices. The optimized perovskite solar cell with the configuration of ITO/Ni-doped ZnO nanorods/PCBM/(MA)y(GA)1-yPbI3/P3HT + Li-TFSI/Au revealed an open-circuit voltage of 0.83 V, a short-circuit current density of 23.73 mA/cm2, a fill factor of 70%, and a power conversion efficiency of 13.79%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

Perovskite-based low-cost and high-efficiency hybrid halide solar cells

Jiandong Fan, Baohua Jia, and Min Gu
Photon. Res. 2(5) 111-120 (2014)

Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods

Ming-Yi Lin, Shang-Hsuan Wu, Li-Jen Hsiao, Widhya Budiawan, Karunakara Moorthy Boopathi, Wei-Chen Tu, Yia-Chung Chang, and Chih-Wei Chu
Opt. Express 24(16) 17910-17915 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref] [PubMed]
  2. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
    [Crossref] [PubMed]
  3. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
    [Crossref]
  4. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  5. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
    [Crossref] [PubMed]
  6. B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
    [Crossref]
  7. A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
    [Crossref]
  8. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
    [Crossref] [PubMed]
  9. Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
    [Crossref] [PubMed]
  10. Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
    [Crossref] [PubMed]
  11. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
    [Crossref]
  12. J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
    [Crossref]
  13. X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
    [Crossref] [PubMed]
  14. D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
    [Crossref]
  15. J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
    [Crossref] [PubMed]
  16. K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
    [Crossref] [PubMed]
  17. K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
    [Crossref] [PubMed]
  18. S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
    [Crossref] [PubMed]
  19. M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
    [Crossref]
  20. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
    [Crossref]
  21. Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
    [Crossref]
  22. K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
    [Crossref] [PubMed]
  23. J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
    [Crossref] [PubMed]
  24. C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
    [Crossref]
  25. J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
    [Crossref]
  26. A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
    [Crossref]
  27. J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
    [Crossref] [PubMed]
  28. M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
    [Crossref] [PubMed]
  29. Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
    [Crossref]
  30. Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [Crossref] [PubMed]
  31. L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
    [Crossref] [PubMed]
  32. S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).
  33. A. Azam and S. S. Babkair, “Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application,” Int. J. Nanomedicine 9, 2109–2115 (2014).
    [Crossref] [PubMed]
  34. E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).
  35. A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
    [Crossref]
  36. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
    [Crossref] [PubMed]
  37. J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
    [Crossref]
  38. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
    [Crossref]
  39. N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
    [Crossref] [PubMed]

2016 (7)

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, “Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes,” Opt. Lett. 41(15), 3463–3466 (2016).
[Crossref] [PubMed]

2015 (3)

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
[Crossref] [PubMed]

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

2014 (11)

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
[Crossref] [PubMed]

K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
[Crossref] [PubMed]

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

A. Azam and S. S. Babkair, “Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application,” Int. J. Nanomedicine 9, 2109–2115 (2014).
[Crossref] [PubMed]

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

2013 (7)

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

2012 (2)

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

2011 (1)

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

2010 (1)

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

2008 (2)

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

2006 (1)

A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
[Crossref]

2005 (1)

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

2003 (1)

B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
[Crossref]

2001 (1)

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Abdellah, M.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Ali, N.

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

Alvi, P. A.

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

Amassian, A.

K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
[Crossref] [PubMed]

K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
[Crossref] [PubMed]

Azam, A.

A. Azam and S. S. Babkair, “Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application,” Int. J. Nanomedicine 9, 2109–2115 (2014).
[Crossref] [PubMed]

Babkair, S. S.

A. Azam and S. S. Babkair, “Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application,” Int. J. Nanomedicine 9, 2109–2115 (2014).
[Crossref] [PubMed]

Bach, U.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Back, H.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Bartelt, J. A.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Baumann, A.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Bi, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Bolink, H. J.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

Bortoleto, J. R. R.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Brine, H.

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

Budai, J. D.

B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
[Crossref]

Burke, T. M.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Cao, D. H.

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

Cevey, L.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Chabera, P.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Chang, R. P. H.

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

Chao, Y.-C.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

Chaves, M.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Chen, C.-Y.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

Chen, L. J.

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

Chen, Q.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Chen, W.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Cheng, C.

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

da Silva, E. P.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

da Silva, G. J.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Dai, Y.-A.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

Damonte, L. C.

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

Davidovic, D.

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

de Arruda, L. B.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

De Marco, N.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Deibel, C.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Dobromir, M.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Dong, J.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Dong, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Du, J.

Durrant, S. F.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Dyakonov, V.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Gao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Geetha, D.

K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
[Crossref] [PubMed]

Grätzel, M.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Gu, Y.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Gunasekar, K.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Han, L.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Hao, F.

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

Harano, K.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Harlang, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

He, J. H.

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

He, J.-H.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

Henni, A.

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

Heo, J. H.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Hernández-Fenollosa, M. A.

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

Hsu, J. W. P.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Huang, J.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Huang, Y.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Husain, S.

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

Iacomi, F.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Iftimie, N.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Im, J.-H.

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Im, S. H.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Inoue, K.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Islam, A.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Jeon, N. J.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Jeong, B.-S.

B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
[Crossref]

Jin, S.-H.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Kanatzidis, M. G.

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

Kang, H.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Karar, A.

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

Kawasaki, M.

A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
[Crossref]

Kelly, T. L.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Kim, C. S.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Kim, D.-H.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Kim, G.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Kim, H.-S.

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Kim, J.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Kim, T. K.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Kim, Y. C.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Krüger, J.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Kwon, S.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Lao, C. S.

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

Lee, C.-R.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Lee, J.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Lee, J. Y.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Lee, K.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Lee, K.-B.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Lee, S. H.

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Lee, Y.-J.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Lei, Y.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Li, D.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Li, J.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Li, X.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Lin, C.-A.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

Lin, H.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Lindenberg, A. M.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Lisboa-Filho, P. N.

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Liu, C.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Liu, D.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Liu, J.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Liu, Y.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Liu, Z.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Luo, J.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Luo, Y.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

Mahmood, K.

K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
[Crossref] [PubMed]

K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
[Crossref] [PubMed]

Malinkiewicz, O.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Marchioro, A.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

McGehee, M. D.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

McKenzie, B. B.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Meng, L.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Meng, Q.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Merrouche, A.

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

Miyasaka, T.

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Moehl, T.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Moon, J. H.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Moser, J. E.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Nakamura, A.

Nakamura, E.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Nazeeruddin, M. K.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Nica, V.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Noh, J. H.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Norton, D. P.

B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
[Crossref]

Ohtomo, A.

A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
[Crossref]

Park, N.-G.

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Pascher, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Pellet, N.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Peters, D. W.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Piccirelli, M.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Plass, R.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

Ponseca, C. S.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Pullerits, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Rahman, F.

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

Raja, K.

K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
[Crossref] [PubMed]

Rambu, A. P.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Ramesh, P. S.

K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
[Crossref] [PubMed]

Reddy, S. S.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Ruby, D. S.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Ryu, S.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

S Swain, B.

K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
[Crossref] [PubMed]

Salleo, A.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Savenije, T. J.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Schiffer, A.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Seo, J.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Seok, S. I.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Shao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Shen, D.

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

Shen, H.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Sher, M.-J.

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Shi, J.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Shirai, Y.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Snaith, H. J.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Son, D.-Y.

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

Song, J.

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

Song, M.

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

Stepanov, A.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Stoumpos, C. C.

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

Su, Z.

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

Sun, P.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Sundström, V.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Swain, B. S.

K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
[Crossref] [PubMed]

Tai, M.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Tanaka, H.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

Tang, X.

Telli, L.

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

Temmyo, J.

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Tian, W.

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

Tolosa, M. D. R.

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

Tsukazaki, A.

A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
[Crossref]

Tvingstedt, K.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Ursu, L.

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Wang, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, L.

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Wang, M.

Wang, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, X.-F.

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

Wang, Z. L.

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

Wei, H.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Wolf, J.-P.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Wu, Y.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Xiao, J.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Xiao, Z.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Xu, G.

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

Xu, J.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Xu, X.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Yan, X.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Yang, W. S.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Yang, X.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Yang, Y.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Yao, E.-P.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Yartsev, A.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Yuan, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Yue, Y.

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Yum, J.-H.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Zang, Z.

Zeng, X.

Zhang, H.

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

Zhang, Y.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Zhao, D.

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Zhao, X.

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Zhao, Y.

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Zheng, E.

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

Zheng, K.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Zhou, H.

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Zhou, J.

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, and H. Lin, “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 8(12), 7826–7833 (2016).
[Crossref] [PubMed]

Adv. Electron. Mater. (1)

M.-J. Sher, J. A. Bartelt, T. M. Burke, A. Salleo, M. D. McGehee, and A. M. Lindenberg, “Time‐and Temperature‐Independent Local Carrier Mobility and Effects of Regioregularity in Polymer‐Fullerene Organic Semiconductors,” Adv. Electron. Mater. 2(3), 1500351 (2016).
[Crossref]

Adv. Mater. (2)

S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-H. Kim, J. H. Moon, J. Y. Lee, M. Song, and S.-H. Jin, “Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability,” Adv. Mater. 28(4), 686–693 (2016).
[Crossref] [PubMed]

J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, and L. Han, “High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1- x -PbI2 for Solar Cells,” Adv. Mater. 27(33), 4918–4923 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79(13), 2085–2087 (2001).
[Crossref]

A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “High-mobility electronic transport in ZnO thin films,” Appl. Phys. Lett. 88(15), 152106 (2006).
[Crossref]

Appl. Surf. Sci. (1)

A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, “Study on Ni-doped ZnO films as gas sensors,” Appl. Surf. Sci. 280, 598–604 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb.) 50(87), 13381–13384 (2014).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Int. J. Nanomedicine (1)

A. Azam and S. S. Babkair, “Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application,” Int. J. Nanomedicine 9, 2109–2115 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 127(47), 16376–16377 (2005).
[Crossref] [PubMed]

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

J. Electroanal. Chem. (1)

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem. 763, 149–154 (2016).
[Crossref]

J. Mater. Chem. (1)

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, Y.-A. Dai, and J.-H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (2)

J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(41), 17291–17296 (2014).
[Crossref]

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(34), 13827–13830 (2014).
[Crossref]

J. Optoelectron. Eng. (1)

S. Husain, F. Rahman, N. Ali, and P. A. Alvi, “Nickel sub-lattice effects on the optical properties of ZnO nanocrystals,” J. Optoelectron. Eng. 1, 28–32 (2013).

J. Phys. Chem. C (1)

D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).
[Crossref]

Mater. Lett. (1)

C. Cheng, G. Xu, H. Zhang, and Y. Luo, “Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism,” Mater. Lett. 62(10-11), 1617–1620 (2008).
[Crossref]

Mater. Res. Bull. (1)

J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang, “Structure and photocatalytic activity of Ni-doped ZnO nanorods,” Mater. Res. Bull. 46(8), 1207–1210 (2011).
[Crossref]

Mater. Sci. Appl. (1)

E. P. da Silva, M. Chaves, G. J. da Silva, L. B. de Arruda, P. N. Lisboa-Filho, S. F. Durrant, and J. R. R. Bortoleto, “Al-doping effect on the surface morphology of ZnO films grown by reactive RF magnetron sputtering,” Mater. Sci. Appl. 4, 761–767 (2013).

Nano Lett. (2)

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, and Y. Yang, “Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells,” Nano Lett. 16(2), 1009–1016 (2016).
[Crossref] [PubMed]

Nanoscale (2)

K. Mahmood, B. S. Swain, and A. Amassian, “Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells,” Nanoscale 7(30), 12812–12819 (2015).
[Crossref] [PubMed]

K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6(24), 14674–14678 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

M. D. R. Tolosa, L. C. Damonte, H. Brine, H. J. Bolink, and M. A. Hernández-Fenollosa, “Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition,” Nanoscale Res. Lett. 8(1), 135 (2013).
[Crossref] [PubMed]

L. Wang, D. Zhao, Z. Su, and D. Shen, “Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots,” Nanoscale Res. Lett. 7(1), 106 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics 8(6), 489–494 (2014).
[Crossref]

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Nature (1)

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Sci. Rep. (2)

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Science (1)

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348(6240), 1234–1237 (2015).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Song, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells 144, 623–630 (2016).
[Crossref]

Solid-State Electron. (1)

B.-S. Jeong, D. P. Norton, and J. D. Budai, “Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition,” Solid-State Electron. 47(12), 2275–2278 (2003).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. Raja, P. S. Ramesh, and D. Geetha, “Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic illustration of fabrication process of the ZnO nanorod arrays on the ITO substrate.
Fig. 2
Fig. 2 Fabrication procedure of perovskite solar cells based on the ZnO nanorod arrays.
Fig. 3
Fig. 3 Side-view and top-view SEM micrographs of (a) (b) non-doped, (c) (d) 1% Ni-doped, and (e) (f) 2% Ni-doped ZnO nanorods arrays.
Fig. 4
Fig. 4 AFM topographic and 3D images of (a) (b) non-doped, (c) (d) 1% Ni-doped, and (e) (f) 2% Ni-doped ZnO nanorod arrays.
Fig. 5
Fig. 5 (a) Transmission and (b) absorption spectra of bare ITO, non-doped, 1%, and 2% Ni-doped ZnO nanorods.
Fig. 6
Fig. 6 XRD patterns of non-doped and Ni-doped ZnO nanorod arrays.
Fig. 7
Fig. 7 (a)–(c) SEM and (d)–(f) AFM topographic images of MAPbI3, (MA)x(FA)1-xPbI3, and (MA)y(GA)1-yPbI3 films on non-doped ZnO nanorods, respectively.
Fig. 8
Fig. 8 Steady-state PL spectra of perovskite films on bare glass, non-doped, and Ni-doped ZnO nanorods.
Fig. 9
Fig. 9 (a) J-V characteristics of MAPbI3 on non-doped and Ni-doped ZnO nanorods; (b) J-V characteristics and (c) EQE spectra of different perovskite solar cells based on 2% Ni-doped ZnO nanorods.
Fig. 10
Fig. 10 Cross-section SEM image of the best device based on (MA)y(GA)1-yPbI3 on 2% Ni-doped ZnO nanorod arrays.
Fig. 11
Fig. 11 Cross-section SEM image of PCBM/ZnO nanorod arrays.
Fig. 12
Fig. 12 TEM and HRTEM images of (a) (b) 1% Ni-doped and (c) (d) 2% Ni-doped ZnO nanorods.
Fig. 13
Fig. 13 ZnO standard (JCPDS 36-1451).
Fig. 14
Fig. 14 EDX spectra of (a) non-doped, (b) 1% Ni-doped, and (c) 2% Ni-doped ZnO nanorods.
Fig. 15
Fig. 15 I-V characteristics of devices based on non-doped, 1% Ni-doped, and 2% Ni-doped ZnO nanorods. The device structure is ITO/ZnO/Au.
Fig. 16
Fig. 16 Screen pages of mobility data of (a) non-doped, (b) 1% Ni-doped, and (c) 2% Ni-doped ZnO nanorod arrays by the Hall measurement.
Fig. 17
Fig. 17 AFM topographic images of MAPbI3 on (a) bar glass, (b) non-doped, and (c) 2% Ni-doped ZnO nanorods.

Tables (2)

Tables Icon

Table 1 Performance of perovskite solar cells based on non-doped and Ni-doped ZnO nanorods.

Tables Icon

Table 2 Performance of perovskite solar cells using different perovskite layers on Ni-doped ZnO nanorods.

Metrics