Abstract

Different particle sizes of colloidal Mn doped ZnCuInS (Mn:ZCIS) nanocrystals were prepared with different reaction times in a noncoordinating solvent. Different test methods were used to reveal the successful incorporation of Mn2+ ion into ZCIS nanocrystals for obtaining the Mn d-state emission. We investigated the temperature-dependent PL spectra of Mn:ZCIS nanocrystals show a redshift with decreasing intensity at low temperature (20–300 K). The energy levels, FWHM of the PL peak and PL Intensity of nanocrystals with different diameters were investigated as a function of temperature in the range 20−300 K. We found that the variation of both energy level and PL peak broadening for Mn:ZCIS nanocrystals were most likely caused by the coupling of the carrier to acoustic phonon.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependent photoluminescence of composition tunable ZnxAgInSe quantum dots and temperature sensor application

Qi Ding, Xiaosong Zhang, Lan Li, Xiabing Lou, Jianping Xu, Ping Zhou, and Ming Yan
Opt. Express 25(16) 19065-19076 (2017)

Characterization of surface modified ZnCuInS2 nanocrystals and its application to white light-emitting diodes

Hyunchul Jung, Wonkeun Chung, Chang Hun Lee, and Sung Hyun Kim
Appl. Opt. 52(10) 1992-1997 (2013)

Photoluminescence from colloidal CdS-CdSe-CdS quantum wells

Jianfeng Xu, David Battaglia, Xiaogang Peng, and Min Xiao
J. Opt. Soc. Am. B 22(5) 1112-1116 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).
  2. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref] [PubMed]
  3. H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
    [Crossref] [PubMed]
  4. M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
    [Crossref] [PubMed]
  5. Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
    [Crossref] [PubMed]
  6. X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
    [Crossref] [PubMed]
  7. J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
    [Crossref]
  8. B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).
  9. I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
    [Crossref]
  10. Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
    [Crossref] [PubMed]
  11. H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
  12. J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
    [Crossref]
  13. D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
    [Crossref] [PubMed]
  14. X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
    [Crossref]
  15. M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
    [Crossref]
  16. A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
    [Crossref] [PubMed]
  17. H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
    [Crossref]
  18. L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).
  19. G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
    [Crossref]
  20. B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
    [Crossref]
  21. B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).
  22. J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
    [Crossref]
  23. W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).
  24. J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
    [Crossref]
  25. S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
    [Crossref]
  26. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
    [Crossref]
  27. J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
    [Crossref]
  28. X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
    [Crossref] [PubMed]
  29. J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
    [Crossref]
  30. S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
    [Crossref] [PubMed]
  31. Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
    [Crossref]
  32. S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
    [Crossref]

2015 (5)

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

2014 (11)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
[Crossref]

B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

2013 (3)

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

2012 (3)

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

2011 (3)

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

2010 (1)

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

2009 (1)

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

2008 (1)

J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
[Crossref]

2004 (1)

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

2003 (1)

J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
[Crossref]

1999 (1)

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

1991 (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Achilefu, S.

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

Ahmad, M. W.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

An, Y.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Azpiroz, J. M.

J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
[Crossref]

Bae, J. E.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Baeck, J. S.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Bai, Z. L.

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

Bhupendra, B.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Bose, R.

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

Bouthinon, B.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Cao, J.

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

Cao, S.

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Cao, W. R.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Chae, K. S.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Chakrabarti, S.

B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).

Chandezon, F.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Chang, Y.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Chen, R.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Chen, W.

J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
[Crossref]

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Chu, H. R.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Chua, S. J.

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

Cui, T.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Cui, Y. P.

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Dai, M.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

deMello, A. J.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Demir, H. V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Deng, D.

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

Dobrowolska, M.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Dong, J. R.

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

Dong, Y.

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

Draguta, S.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Faure-Vincent, J.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Furdyna, J. K.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Gao, F. M.

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

Gao, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Gromova, M.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Gu, P. F.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Gu, Y.

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

He, T.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Holloway, P. H.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Hu, J. L.

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

Huang, Y.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Hyvonen, J.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Infante, I.

J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
[Crossref]

Jackson, E.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Jana, S.

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

Jana Sarma, D. D.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Jean Daou, T.

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Ji, W.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Jiang, J. Q.

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Jing, P.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Kameyama, T.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Kawaguchi, K.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Kelly, J. J.

J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
[Crossref]

Kim, J. C.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Kim, S. J.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Kim, T. J.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Kim Chi, T. T.

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Klimov, V. I.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Koposov, Y. A.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Koshizaki, N.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Kovalenko, M. V.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Kudo, A.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Kundu, B.

B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).

Kuwabata, S.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Leck, K. S.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Lee, G. H.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Lee, S.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Lefrançois, A.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Li, C.

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Li, H.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Li, L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Li, Q.

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

Li, X.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Lignos, I.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Lin, H. Y.

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

Liu, W. Y.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Liu, X. J.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Loi, M. A.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Lombard, C.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Luszczynska, B.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Ma, Y.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Makarov, S. N.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Manders, J. R.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Manna, G.

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

McDaniel, H.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Meijerink, A.

J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
[Crossref]

Nalla, V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Nikhil, R.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Niladri, S.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Ogawa, S.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Okazaki, K. I.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Park, J. A.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Peng, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Pepin-Donat, B.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Pietryga, M. J.

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

Piveteau, L.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Pouget, S.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Pradhan, N.

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Protesescu, L.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Pyatenko, A.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Qian, L.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Qu, L.

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

Quang Liem, N.

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Redox, A. J. P.

B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).

Reiss, P.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Rho, H.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Rowland, C. E.

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

Sadki, S.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Santanu Jana, S.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Sayantan Paria, K.

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

Schaller, R. D.

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

Shang, M.

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Shao, Q. Y.

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

Shen, X. C.

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Shimizu, Y.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Smith, L. M.

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

Speirs, M. J.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Stavrakis, S.

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

Sun, H.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Suyver, J. F.

J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
[Crossref]

Ta, V. D.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Texier, I.

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Titov, A.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Torimoto, T.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Tsuboi, Y.

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

Ugalde, J. M.

J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
[Crossref]

Vela, J.

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

Verilhac, J. M.

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

Wang, H.

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Wang, J.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
[Crossref]

Wang, L.

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

Wang, M.

J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
[Crossref]

Wang, X. L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Wang, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Wang, Y. D.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Wang, Y. H.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Wei, G.

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Wei, G. D.

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

William, W. Yu.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Xi, Q.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

Xie, R. G.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Xie, Y.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Xu, S. J.

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

Xu, S. Y.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

Xu, W.

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

Xue, J. G.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Yang, B. P.

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Yang, C. J.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Yang, W.

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Yang, W. S.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Yang, W. Y.

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

Yang, Y. X.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Yuan, L.-L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Yuan, X.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Zeng, R.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Zhai, W. W.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, H.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Zhang, H. C.

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Zhang, H. Z.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, J.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Zhang, J. Y.

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Zhang, T. Q.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, X. S.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

Zhang, Y.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Zhao, J.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zheng, J.

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Zheng, J. J.

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

Zheng, Y.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Zhong, H. Z.

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

Zhou, Y. L.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

Zhu, Z.

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

Zou, B. S.

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

ACS Nano (1)

Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, “Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy,” ACS Nano 8(8), 8334–8343 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27(1), 169–175 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

J. C. Kim, H. Rho, L. M. Smith, E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, “Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots,” Appl. Phys. Lett. 75(2), 214 (1999).
[Crossref]

S. J. Xu, Q. Li, J. R. Dong, and S. J. Chua, “Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP 2/GaAs interface,” Appl. Phys. Lett. 84(13), 2280–2282 (2004).
[Crossref]

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Chem. Commun. (Camb.) (1)

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun. (Camb.) 47(3), 932–934 (2011).
[Crossref] [PubMed]

Chem. Mater. (4)

B. Kundu, S. Chakrabarti, and A. J. P. Redox, “Levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: insight from scanning tunneling spectroscopy,” Chem. Mater. 26(19), 5506–5513 (2014).

I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs, M. A. Loi, M. V. Kovalenko, and A. J. deMello, “Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection,” Chem. Mater. 26(9), 2975–2982 (2014).
[Crossref]

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

L. Li, T. Jean Daou, I. Texier, T. T. Kim Chi, N. Quang Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422 (2009).

Chin. Phys. B (2)

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L.-L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn—Cu—In—S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce*,” Chin. Phys. B 20(3), 037804 (2011).
[Crossref]

J. Alloys Compd. (2)

Q. Y. Shao, H. Y. Lin, J. L. Hu, Y. Dong, and J. Q. Jiang, “Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors,” J. Alloys Compd. 552, 370–375 (2013).
[Crossref]

J. Wang, W. Chen, and M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films,” J. Alloys Compd. 449(1), 44–47 (2008).
[Crossref]

J. Chem. Theory Comput. (1)

J. M. Azpiroz, J. M. Ugalde, and I. Infante, “Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots,” J. Chem. Theory Comput. 10(1), 76–89 (2014).
[Crossref]

J. Lumin. (1)

J. F. Suyver, J. J. Kelly, and A. Meijerink, “Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS: Mn2+,” J. Lumin. 104(3), 187–196 (2003).
[Crossref]

J. Mater. Chem. (1)

M. Dai, S. Ogawa, T. Kameyama, K. I. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, “Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles,” J. Mater. Chem. 22(25), 12851–12858 (2012).
[Crossref]

J. Phys. Chem. C (2)

H. McDaniel, Y. A. Koposov, S. Draguta, S. N. Makarov, M. J. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. Yu. William, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

J. Phys. Chem. Lett. (3)

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

B. Bhupendra, S. Santanu Jana, S. Niladri, K. Sayantan Paria, R. Nikhil, D. D. Jana Sarma, and N. Pradhan, “Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis,” J. Phys. Chem. Lett. 1(9), 1454–1458 (2010).

G. Manna, S. Jana, R. Bose, and N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals,” J. Phys. Chem. Lett. 3(18), 2528–2534 (2012).
[Crossref]

Nanoscale (1)

X. Yuan, J. Zheng, R. Zeng, P. Jing, W. Ji, J. Zhao, W. Yang, and H. Li, “Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots,” Nanoscale 6(1), 300–307 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259–266 (2015).

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

D. Deng, J. Cao, L. Qu, S. Achilefu, and Y. Gu, “Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging,” Phys. Chem. Chem. Phys. 15(14), 5078–5083 (2013).
[Crossref] [PubMed]

RSC Advances (1)

J. J. Zheng, S. Cao, L. Wang, F. M. Gao, G. D. Wei, and W. Y. Yang, “Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots,” RSC Advances 4(58), 30948–30952 (2014).
[Crossref]

Sci. Adv. Mater. (1)

B. P. Yang, X. C. Shen, H. C. Zhang, Y. P. Cui, and J. Y. Zhang, “Temperature-dependent photoluminescence of Mn-doped ZnSe nanocrystals,” Sci. Adv. Mater. 6(3), 623–626 (2014).
[Crossref]

Sci. Rep. (4)

A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J. M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, “Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells,” Sci. Rep. 5, 7768 (2015).
[Crossref] [PubMed]

H. Zhang, Y. Ma, Y. Xie, Y. An, Y. Huang, Z. Zhu, and C. J. Yang, “A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery,” Sci. Rep. 5, 10099 (2015).
[Crossref] [PubMed]

M. W. Ahmad, W. Xu, S. J. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, J. A. Park, T. J. Kim, and G. H. Lee, “Potential dual imaging nanoparticle: Gd2O3 nanoparticle,” Sci. Rep. 5, 8549 (2015).
[Crossref] [PubMed]

S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang, “Long-lived and well-resolved Mn²⁺ ion emissions in CuInS-ZnS quantum dots,” Sci. Rep. 4, 7510 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 TEM photos and the corresponding HRTEM photos (inset) of Mn doped ZCIS nanocrystals prepared with the reaction time of (a) 20 min; (b) 30 min; (c) 45 min. (d) Energy dispersive X-ray spectroscopy spectrum of Mn doped ZCIS nanocrystals prepared with the reaction time of 45 min; (e) XRD patterns of ZCIS NCs prepared with (black) and without (red) Mn2+ dopants.
Fig. 2
Fig. 2 (a) XPS spectrum of the Mn doped ZCIS nanocrystals; (b) Mn 2p spectrum of Mn doped ZCIS nanocrystals.
Fig. 3
Fig. 3 (a) Temporal evolution of excitation and PL emission spectra (λex = 467 nm) of Mn doped ZCIS nanocrystals samples in chloroform solution; the photos of (b) ZCIS nanocrystals; (c) Mn doped ZCIS nanocrystals dispersed in chloroform with different reaction times taken under the illumination of a 450 nm blue LED (from left to right: 20 min, 30 min and 45 min).
Fig. 4
Fig. 4 PL lifetime decay curves of Mn: ZCIS NCs with different reaction time.
Fig. 5
Fig. 5 Schematic diagram of Mn2+ ions Emission in Mn:ZCIS Nanocrystals.
Fig. 6
Fig. 6 Temperature-dependent PL spectra of Mn doped ZCIS nanocrystals with the reaction times of (a) 20 min; (b) 30 min; (c) 45 min.
Fig. 7
Fig. 7 Integrated PL intensities of Mn doped ZCIS nanocrystals with different particle sizes as a function of temperature. Solid lines are the fitting results according to Eq. (1).
Fig. 8
Fig. 8 Temperature-dependent peak energy for Mn doped ZCIS nanocrystals with three different reaction times. The fitted curves (solid lines) are according to Eq. (2).
Fig. 9
Fig. 9 Temperature-dependent FWHM of the PL spectra for Mn doped ZCIS nanocrystals with three different sizes and the fitted parameters. Solid lines are the fitted results according to Eq. (3).

Tables (3)

Tables Icon

Table 1 The fitted parameters of integrated PL intensities of Mn doped ZCIS nanocrystals with different particle sizes as a function of temperature

Tables Icon

Table 2 The fitted results (solid lines) according to Eq. (2)

Tables Icon

Table 3 The fitting parameters of temperature-dependent FWHM of the PL spectra for Mn doped ZCIS nanocrystals with three different sizes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( T ) = I ( 0 ) 1 + A exp ( Δ E / κ T )
E g ( T ) = E g ( 0 ) 2 S h w [ exp ( h w k B T 1 ) ] 1
Γ ( T ) = Γ 0 coth ( w 2 k B T )

Metrics