Abstract

We demonstrated passively mode-locked ytterbium and erbium doped fiber lasers operating at 1039 and 1560 nm by using a common gold nanorods (GNRs) saturable absorber (SA). The GNRs with designed aspect ratios were mixed with sodium carboxymethylcelluose to form the GNRs SA film. The film had broadband longitudinal SPR (surface plasmon resonance) absorption from 800 to 1800 nm. By inserting the same film into a ytterbium or erbium doped fiber laser cavity pumped by a 980 nm laser diode, stable passively mode-locked laser operation at 1039 or 1560 nm was achieved for a threshold pump power of ~100 or ~70 mW, respectively. The pulse width, the output power, and the repetition rate of the 1039 nm mode-locked laser were 460 ps, 1.47 mW, and 43.5 MHz for a pump power of ~110 mW, respectively. The corresponding output parameters of the 1560 nm mode-locked laser were 2.91 ps, 2 mW, and 35.6 MHz for a pump power of ~74 mW, respectively. Our results showed that one GNRs SA could be used for constructing broadband mode-locked lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh
Opt. Express 22(11) 12880-12889 (2014)

Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber

Jaroslaw Sotor, Grzegorz Sobon, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 21(16) 18994-19002 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [Crossref] [PubMed]
  2. S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).
  3. K. H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18(7), 7488–7496 (2010).
    [Crossref] [PubMed]
  4. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
    [Crossref]
  5. A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
    [Crossref]
  6. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett. 37(9), 1490–1492 (2012).
    [Crossref] [PubMed]
  7. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Express 20, 16174–16179 (2012).
  8. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  9. J. T. Lin, “Nonlinear optical theory and figure of merit of surface plasmon resonance of gold nanorods,” J. Nanophoton. 5(1), 051506 (2011).
    [Crossref]
  10. J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
    [Crossref]
  11. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  12. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]
  13. X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
    [Crossref] [PubMed]
  14. X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
    [Crossref] [PubMed]
  15. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
    [Crossref]
  16. X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).
  17. S. S. Huang, Y. G. Wang, P. G. Yan, J. Q. Zhao, H. Q. Li, and R. Y. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
    [Crossref] [PubMed]
  18. X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref] [PubMed]
  19. X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
    [Crossref]
  20. X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref] [PubMed]
  21. Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
    [Crossref]
  22. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
    [Crossref]
  23. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]

2014 (4)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

S. S. Huang, Y. G. Wang, P. G. Yan, J. Q. Zhao, H. Q. Li, and R. Y. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

2013 (3)

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

2012 (5)

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).

K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett. 37(9), 1490–1492 (2012).
[Crossref] [PubMed]

K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Express 20, 16174–16179 (2012).

2011 (1)

J. T. Lin, “Nonlinear optical theory and figure of merit of surface plasmon resonance of gold nanorods,” J. Nanophoton. 5(1), 051506 (2011).
[Crossref]

2010 (2)

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

K. H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18(7), 7488–7496 (2010).
[Crossref] [PubMed]

2009 (2)

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

2008 (1)

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

2006 (1)

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

2004 (1)

M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

2000 (1)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

1997 (1)

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

1996 (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Billard, F.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Biradar, A. M.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

Bochinski, J. R.

S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).

Caglayan, H.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Chen, J.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Chen, X.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chen, Y. T.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Cheng, X.

Cheng, X. P.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Clarke, L. I.

S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Doan-Nguyen, V.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Engheta, N.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Ferrari, A. C.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Gao, X. J.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Gao, Y. Z.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

Griebner, U.

Haase, W.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

Hasan, T.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Herrmann, J.

Huang, S. S.

Husakou, A.

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z. X.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jin, L. H.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kagan, C. R.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Kang, Y. J.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Kang, Z.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kärtner, F. X.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kelleher, E. J. R.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Keller, U.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kerboua, C. H.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Kim, K. H.

Kumar, A.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

Lamarre, J. M.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Lequime, M.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Li, H. Q.

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, X. H.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Liang, G. Z.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Lin, J. T.

J. T. Lin, “Nonlinear optical theory and figure of merit of surface plasmon resonance of gold nanorods,” J. Nanophoton. 5(1), 051506 (2011).
[Crossref]

Lin, R. Y.

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Loh, K. P.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Maity, S.

S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).

Martinu, L.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Mehta, D. S.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

Meng, B.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Murray, C. B.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Nicolosi, V.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Philip, R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

Popa, D.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Pradeep, T.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

Prakash, J.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

Qin, G. S.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, W. P.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qiu, M.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Reifsnyder, D. C.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

Roorda, S.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Sandhyarani, N.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

Sheng, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Shum, P. P.

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Sun, H. D.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Sun, Z. P.

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Tang, D. Y.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Tang, Y. L.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Torrisi, F.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Travers, J. C.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Wang, F. Q.

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Wang, Q. J.

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Wang, Y.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Wang, Y. G.

Wang, Y. S.

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Wu, K.

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Xing, G. Z.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Yan, M.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Yan, P. G.

Yan, Z. Y.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Ye, X. C.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Yu, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

Yu, X.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Yu, X. C.

Zhang, H.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, L.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, Y.

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

X. H. Li, Y. G. Wang, Y. S. Wang, W. Zhao, X. C. Yu, Z. P. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Zhang, Y. Z.

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, J. Q.

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhao, W.

Zheng, C.

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

ACS Nano (2)

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Maity, J. R. Bochinski, and L. I. Clarke, “Metal nanoparticles acting as light-activated heating elements within composite materials,” Adv. Mater. 22, 5259–5270 (2012).

Appl. Phys. Lett. (5)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a grapheme-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1 (1997).
[Crossref]

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Chem. Rev. (1)

M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

X. H. Li, Y. L. Tang, Z. Y. Yan, Y. Wang, B. Meng, G. Z. Liang, H. D. Sun, X. Yu, Y. Zhang, X. P. Cheng, and Q. J. Wang, “Broadband saturable absorption of grapheme oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 1101107 (2014).

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

J. Nanophoton. (1)

J. T. Lin, “Nonlinear optical theory and figure of merit of surface plasmon resonance of gold nanorods,” J. Nanophoton. 5(1), 051506 (2011).
[Crossref]

Laser Phys. Lett. (2)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorbers for passively mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013).
[Crossref]

Nano Lett. (1)

X. C. Ye, Y. Z. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures,” Nano Lett. 13(5), 2163–2171 (2013).
[Crossref] [PubMed]

Nano Res. (1)

Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, grapheme-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Opt. Commun. (1)

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM image and aspect ratios distribution of the GNRs, (a) Average aspect ratio of ~4.5 (GNRs 4.5). (b) Average aspect ratio of ~5.5 (GNRs 5.5). (c) Average aspect ratios of ~4.5 and 5.5 (GNRs Mixed). (d) Absorption spectra of different GNRs films. Blue dash dots curve represents GNRs 4.5, red dots curve represents GNRs 5.5, and black solid curve represents GNRs Mixed. Scale bar: 200 nm.

Fig. 2
Fig. 2

The schematic diagram of power-dependent transmittance measurements.

Fig. 3
Fig. 3

The nonlinear SA property of GNRs absorber are studied by power-dependent measurements at 1 and 1.56 μm wavelength with mode-locked fiber lasers. (a) GNRs 4.5, (b) GNRs 5.5, (c) and (d) Mixed GNRs.

Fig. 4
Fig. 4

Schematic illustration of the proposed GNRs based mode-locking ring cavity fiber laser.

Fig. 5
Fig. 5

(a) Emission spectrum, (b) Output pulse trains, (c) Single pulse profile of the mode-locked YDFL for a pump power of 110 mW. (d) Output power of the mode-locked YDFL as a function of the pump power of the 980 nm LD.

Fig. 6
Fig. 6

(a) Emission spectrum, (b) Output pulse trains, (c) Single pulse profile of the mode-locked EDFL for a pump power of 74 mW. (d) Output power of the mode-locked EDFL as a function of the pump power of the 980 nm LD.

Fig. 7
Fig. 7

Absorption spectrum of a bare NaCMC film.

Tables (1)

Tables Icon

Table 1 Nonlinear absorption properties of GNRs.

Metrics