Abstract

This study demonstrates the effectual purification of degraded nematic liquid crystals (LCs) by introducing metal–organic framework (MOF) into the copolymer with either negatively charged 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or positively charged (vinylbenzyl) trimethylammonium chloride (VBTA). Experimental results show that the ion elimination is primarily achieved by the nanoporous MOF itself while AMPS or VBTA plays an important role in functionalizing MOF with hydrophilicity. It was found that the overall ion-removal efficacy of either MOF/polymer-AMPS or MOF/polymer-VBTA composite is higher than that of the pristine MOF counterpart.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linearly polarized surface warm-yellow LED based on orientated organic dyes in rod-like metal-organic framework crystal arrays

Jin Wang, Feihong Ye, Zhenjiang Huang, Yunchao Zhang, Xinhui Zhou, and Yunqing Lu
Opt. Mater. Express 8(9) 2901-2909 (2018)

Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks

Dowon Ahn, Yong-Cheol Jeong, Seungwoo Lee, Jihye Lee, Yongjoon Heo, and Jung-Ki Park
Opt. Express 17(19) 16603-16612 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
    [Crossref] [PubMed]
  2. W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
    [Crossref]
  3. C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
    [Crossref]
  4. H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
    [Crossref]
  5. S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
    [Crossref]
  6. V. A. Tsvetkov and O. V. Tsvetkov, “Ions influence on electrooptical characteristics of NLC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 368(1), 625–632 (2001).
    [Crossref]
  7. L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
    [Crossref]
  8. C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
    [Crossref]
  9. H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
    [Crossref]
  10. B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
    [Crossref]
  11. P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
    [Crossref]
  12. P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).
  13. C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
    [Crossref]
  14. H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
    [Crossref]
  15. H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
    [Crossref]
  16. H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
    [Crossref] [PubMed]
  17. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
    [Crossref] [PubMed]
  18. D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
    [Crossref]
  19. G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
    [Crossref]
  20. F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).
  21. W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
    [Crossref]
  22. J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
    [Crossref]
  23. M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
    [Crossref]

2014 (2)

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

2013 (5)

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

2012 (2)

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

2011 (2)

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
[Crossref]

2010 (4)

C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
[Crossref] [PubMed]

W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
[Crossref]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

2009 (1)

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

2007 (1)

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

2005 (2)

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

2004 (1)

L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
[Crossref]

2001 (1)

V. A. Tsvetkov and O. V. Tsvetkov, “Ions influence on electrooptical characteristics of NLC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 368(1), 625–632 (2001).
[Crossref]

1996 (2)

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[Crossref]

Alexe-Ionescu, A. L.

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

Barbero, G.

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
[Crossref]

Chang, J.-S.

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

Chao, C.-Y.

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

Chen, P.-C.

C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
[Crossref] [PubMed]

Chen, P.-S.

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

Cheng, Y.-J.

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

Chung, H.-K.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

Colpaert, C.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

David Raju, B.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

De Meyere, A.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

Dong, J.

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

Doroski, D.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[Crossref]

Dutour, J.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Ferey, G.

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

Férey, G.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Ha, Y.-S.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

Han, J.-M.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

Hong, D.-Y.

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

Hsieh, Y.-Z.

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Hsu, C.-S.

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Hsu, J.-S.

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

Huang, C.-C.

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

Huang, C.-T.

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

Huang, H.-Y.

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

Huang, S.-M.

C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
[Crossref]

Hung, H.-Y.

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Hwang, Y.-K.

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

Jian, B.-R.

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Jung, H.-Y.

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Kang, Y.-G.

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Kantam, M. L.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

Kim, H.-J.

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Lee, C.-Y.

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Lee, J.-W.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

Lee, W.

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
[Crossref]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
[Crossref]

Lei, C.-N.

C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
[Crossref] [PubMed]

Li, J.

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

Liao, K.-T.

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

Lin, C.-H.

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
[Crossref]

Lin, C.-L.

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

Lin, F.-C.

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

Liu, H.-H.

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

Liu, Y.-W.

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

Lu, C.-W.

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Margiolaki, I.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Maximus, B.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

Mellot-Draznieks, C.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Millange, F.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Moddel, G.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[Crossref]

Oh, B.-Y.

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Palomares, L. O.

L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
[Crossref]

Park, H.-G.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Perlmutter, S. H.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[Crossref]

Rama Rao, K. S.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

Reddy, K. R.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

Reyes, J. A.

L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
[Crossref]

Seo, D.-S.

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Serre, C.

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Srinivasu, P.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

Surblé, S.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Suresh, M.

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

Tang, C.-Y.

C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
[Crossref]

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Tsvetkov, O. V.

V. A. Tsvetkov and O. V. Tsvetkov, “Ions influence on electrooptical characteristics of NLC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 368(1), 625–632 (2001).
[Crossref]

Tsvetkov, V. A.

V. A. Tsvetkov and O. V. Tsvetkov, “Ions influence on electrooptical characteristics of NLC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 368(1), 625–632 (2001).
[Crossref]

Wang, C.-T.

W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
[Crossref]

Whang, L.-M.

C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
[Crossref] [PubMed]

Wu, C.-Y.

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

Wu, P.-C.

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

Yang, J.

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

Yang, S.

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

Zhao, Q.

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

Adv. Cond. Mat. Phys. (1)

F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574 (2013).

Adv. Funct. Mater. (1)

D.-Y. Hong, Y.-K. Hwang, C. Serre, G. Ferey, and J.-S. Chang, “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis,” Adv. Funct. Mater. 19(10), 1537–1552 (2009).
[Crossref]

Anal. Chim. Acta (1)

H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, and C.-H. Lin, “Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography,” Anal. Chim. Acta 779, 96–103 (2013).
[Crossref] [PubMed]

Anal. Methods (1)

H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu, and Y.-Z. Hsieh, “Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry,” Anal. Methods 4(11), 3631–3637 (2012).
[Crossref]

Appl. Phys. Express (1)

C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu, and W. Lee, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701 (2013).
[Crossref]

Appl. Phys. Lett. (4)

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[Crossref]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

P.-S. Chen, C.-C. Huang, Y.-W. Liu, and C.-Y. Chao, “Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells,” Appl. Phys. Lett. 90, 21111 (2007).

Carbon (1)

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Chemosphere (1)

C.-N. Lei, L.-M. Whang, and P.-C. Chen, “Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors,” Chemosphere 81(1), 57–64 (2010).
[Crossref] [PubMed]

Displays (1)

W. Lee, C.-T. Wang, and C.-H. Lin, “Recovery of the electrically resistive properties of a degraded liquid crystal,” Displays 31(3), 160–163 (2010).
[Crossref]

J. Chem. Sci. (1)

M. Suresh, B. David Raju, K. S. Rama Rao, K. R. Reddy, M. L. Kantam, and P. Srinivasu, “Metal organic framework MIL-101(Cr) for dehydration reactions,” J. Chem. Sci. 126(2), 527–532 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

C.-Y. Tang, S.-M. Huang, and W. Lee, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Phys. D Appl. Phys. 44, 355102 (2011).
[Crossref]

Liq. Cryst. (4)

H.-Y. Jung, H.-J. Kim, S. Yang, Y.-G. Kang, B.-Y. Oh, H.-G. Park, and D.-S. Seo, “Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices,” Liq. Cryst. 39(7), 789–793 (2012).
[Crossref]

H.-K. Chung, H.-G. Park, Y.-S. Ha, J.-M. Han, J.-W. Lee, and D.-S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 5(5), 632–638 (2013).
[Crossref]

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

Microporous Mesoporous Mater. (1)

J. Yang, Q. Zhao, J. Li, and J. Dong, “Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,” Microporous Mesoporous Mater. 130(1-3), 174–179 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

W. Lee, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 601(1), 88–96 (2014).
[Crossref]

V. A. Tsvetkov and O. V. Tsvetkov, “Ions influence on electrooptical characteristics of NLC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 368(1), 625–632 (2001).
[Crossref]

Phys. Lett. A (1)

L. O. Palomares, J. A. Reyes, and G. Barbero, “Optical response of a nematic sample submitted to a periodic external electric field: role of the ionic impurities,” Phys. Lett. A 333(1-2), 157–163 (2004).
[Crossref]

Science (1)

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki, “A chromium terephthalate-based solid with unusually large pore volumes and surface area,” Science 309(5743), 2040–2042 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Molecular structures of (a) BMA, (b) EDMA, (c) AMPS, and (d) VBTA.
Fig. 2
Fig. 2 XRD patterns of the as-synthesized MIL-101(Cr) and MIL-101(Cr)/copolymer.
Fig. 3
Fig. 3 Time-varying weight gains in various agents due to atmospheric water adsorption.
Fig. 4
Fig. 4 Measured real (open symbols) and imaginary (filled symbols) parts of the dielectric functions in cells of untreated G1U and G1N as well as G1U treated with various agents. Inset, deduced ion-removal ratios in various LC samples.
Fig. 5
Fig. 5 Imaginary parts of the dielectric constants of an untreated G1U, various treated G1U cells and a G1N counterpart for comparison. Inset, deduced charge densities in various LC samples.
Fig. 6
Fig. 6 Movement and interception of water molecules in LC impregnated with (a) MOF and with (b) MOF/polymer-AMPS or MOF/polymer-VBTA composite.
Fig. 7
Fig. 7 Comparison of the primary elements in the G1N, G1U and G1U treated with 0.5 wt% of MOF, AMPS-Polymer/MOF/polymer-AMPS and MOF/polymer-VBTA for 24 h.

Tables (1)

Tables Icon

Table 1 Ion-Removal Ratios in Cells of GIU Treated with MOF/polymer-AMPS of Various AMPS Contents

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε (f)= n q 2 D 3/2 π 3/2 ε 0 d k B T f 3/2 + ε b ,
ε (f)= n q 2 D π ε 0 k B T f 1 ,
W gain = W total W dried W dried ×100%,

Metrics