Abstract

In the last decade, two-photon polymerization (2PP) has gained increasing interest for the production of individually shaped 3D structures. For the successful implementation of 2PP within a production chain for the industrial manufacturing of optical microstructures, advanced material properties of the photo polymer are required. The usable laser dynamic range, shape accuracy as well as surface roughness play a crucial role. In this publication, we present the results of an iterative optimization process aiming at a material applicable for 3D structures written by 2PP. The special focus here lies on the influence of the photo initiator and stabilizer on the usable laser dynamic range and shape fidelity. The application of the optimized photo polymer for the production of a complex prism array, which could be used as master mold, is also shown.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic modeling of superresolution photoinduced-inhibition nanolithography

Zongsong Gan, Yaoyu Cao, Baohua Jia, and Min Gu
Opt. Express 20(15) 16871-16879 (2012)

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

Cationic two-photon induced polymerization with high dynamic range

Yuri Boiko, Joannes M. Costa, Mark Wang, and Sadik Esener
Opt. Express 8(10) 571-584 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
    [Crossref]
  2. A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
    [Crossref] [PubMed]
  3. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
    [Crossref] [PubMed]
  4. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
    [Crossref] [PubMed]
  5. T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
    [Crossref]
  6. I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
    [Crossref] [PubMed]
  7. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
    [Crossref]
  8. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
    [Crossref]
  9. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
    [Crossref]
  10. J.P. Fouassier and J. Lavele, “Photoinitiators for Polymer Synthesis,” John WileySons, ISBN 3527648267 (2013).
  11. W.A. Green, “Industrial Photoinitiators: A Technical Guide,” Taylor Francis, ISBN 1439827451 (2010).
    [Crossref]

2014 (1)

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

2012 (2)

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
[Crossref] [PubMed]

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

2011 (1)

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

2010 (1)

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

2004 (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

2003 (1)

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Autenrieth, T. J.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Balu, M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Bastmeyer, M.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Belazaras, K.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Belfield, K. D.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Bräuer, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Bückmann, T.

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Buestrich, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Byer, R. L.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Colby, E.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Cronauer, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Dannberg, P.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Domann, G.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Farsari, M.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Fischer, J.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Fouassier, J.P.

J.P. Fouassier and J. Lavele, “Photoinitiators for Polymer Synthesis,” John WileySons, ISBN 3527648267 (2013).

Franz, C. M.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Freymann, G. v.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Fröhlich, A.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Fröhlich, L.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Gadonas, R.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Gilbergs, H.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Green, W.A.

W.A. Green, “Industrial Photoinitiators: A Technical Guide,” Taylor Francis, ISBN 1439827451 (2010).
[Crossref]

Greiner, A. M.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
[Crossref] [PubMed]

Hagan, D. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Hales, J. M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Houbertz, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Jäckel, M.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Jiang, Z.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Kadic, M.

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Klein, F.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Lahann, J.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Lavele, J.

J.P. Fouassier and J. Lavele, “Photoinitiators for Polymer Synthesis,” John WileySons, ISBN 3527648267 (2013).

Malinauskas, M.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Martin, H.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

McGuinness, C.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Milton, G.

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Momot, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Paipulas, D.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Park, J.-U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Piskarskas, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Popall, M.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Purlys, V.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Richter, B.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

Sakellari, I.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Schafer, K. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Scheiwe, A. C.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Schittny, R.

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Schmitt, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Stamow, D. R.

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Staude, I.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Streppel, U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Striebel, T.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Thiel, M.

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Van Stryland, E. W.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Wächter, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Wegener, M.

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Zukauskas, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

Advanced Materials (2)

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials 23, 1341–1345 (2011).
[Crossref] [PubMed]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials 22, 868–871 (2010).
[Crossref] [PubMed]

Biomaterials (1)

A. M. Greiner, M. Jäckel, A. C. Scheiwe, D. R. Stamow, T. J. Autenrieth, J. Lahann, C. M. Franz, and M. Bastmeyer, “Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion,” Biomaterials 35, 611–619 (2014).
[Crossref]

Journal of Photochemistry and Photobiology A: Chemistry (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” Journal of Photochemistry and Photobiology A: Chemistry 162, 497502 (2004).
[Crossref]

Macromolecular Bioscience (1)

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-Engineered 3D Scaffolds for Cell Culture Studies,” Macromolecular Bioscience 12, 1301–1314 (2012).
[Crossref] [PubMed]

Optics Express (1)

I. Staude, C. McGuinness, A. Fröhlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Optics Express 20, 5607–5612 (2012).
[Crossref] [PubMed]

Thin Solid Films (1)

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid material for application in optical devices,” Thin Solid Films 442, 194–200 (2003).
[Crossref]

Other (4)

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” IOP Science, Journal of Optics12, 124010, (2010).
[Crossref]

J.P. Fouassier and J. Lavele, “Photoinitiators for Polymer Synthesis,” John WileySons, ISBN 3527648267 (2013).

W.A. Green, “Industrial Photoinitiators: A Technical Guide,” Taylor Francis, ISBN 1439827451 (2010).
[Crossref]

T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G. Milton, and M. Wegener, “On three-dimensional dilational elastic metamaterials,” New Journal of Physics16, 033032, (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Possible power dynamic range for the different OrmoComp® Samples (1–9) and Standard OrmoComp®.
Fig. 2
Fig. 2 SEM image of the test geometries for defining the dynamic range of the photosensitive polymers with different photoinitiators. In each picture, the laser power was increased from right to left in 4 mW steps. (a) Irgacure OXE01 (12mW–36 mW), (b) Irgacure 819 (16 mW to 36 mW), (c) Darocur 4265 (16 mW to 36 mW).
Fig. 3
Fig. 3 SEM images of the test geometries consisting of photo polymer with different concentrations of photoinitiator. (a) 0.5 wt%, (b) 1.25 wt%.
Fig. 4
Fig. 4 SEM images of the test geometries, consisting of photo polymer with different concentrations of stabilizer. (a) 0.0wt%, (b) 0.25wt%, (c) 0.5 wt%.
Fig. 5
Fig. 5 SEM image of the prism array, manufactured from OrmoComp® Sample 9, designed and analyzed beforehand with VirtualLab by LightTrans.

Tables (1)

Tables Icon

Table 1 Varation of OrmoComp® Compositions (Sample 1–9).

Metrics