Abstract

Temperature and Fermi energy dependent exciton eigenenergies of monolayer molybdenum disulfide (MoS2) are calculated using an atomistic model. These exciton eigen-energies are used as the resonance frequencies of a hybrid Lorentz-Drude-Gaussian model, in which oscillation strengths and damping coefficients are obtained from the experimental results for the differential transmission and reflection spectra of monolayer MoS2 coated quartz and silicon substrates, respectively. Numerical results compared to experimental results found in the literature reveal that the developed permittivity model can successfully represent the monolayer MoS2 under different biasing conditions at different temperatures for the design and simulation of MoS2 based opto-electronic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy

Piotr Patoka, Georg Ulrich, Ariana E. Nguyen, Ludwig Bartels, Peter A. Dowben, Volodymyr Turkowski, Talat S. Rahman, Peter Hermann, Bernd Kästner, Arne Hoehl, Gerhard Ulm, and Eckart Rühl
Opt. Express 24(2) 1154-1164 (2016)

Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh
Opt. Express 22(6) 7249-7260 (2014)

Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor
Opt. Express 22(25) 31113-31122 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963).
    [Crossref]
  2. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
    [Crossref] [PubMed]
  3. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
    [Crossref]
  4. S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
    [Crossref] [PubMed]
  5. C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
    [Crossref]
  6. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
    [Crossref]
  7. A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
    [Crossref]
  8. J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .
  9. W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
    [Crossref]
  10. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
    [Crossref]
  11. Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
    [Crossref]
  12. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
    [Crossref]
  13. H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
    [Crossref] [PubMed]
  14. E. S. Kadantsev and P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012).
    [Crossref]
  15. T. Cheiwchanchamnangij and W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012).
    [Crossref]
  16. A. Ramasubramaniam, “Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
    [Crossref]
  17. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
    [Crossref]
  18. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
    [Crossref]
  19. F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
    [Crossref]
  20. E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013).
    [Crossref] [PubMed]
  21. F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan.2014.
  22. S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
    [Crossref]
  23. Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
    [Crossref] [PubMed]
  24. J. R. Wait, “Transmission and reflection of electromagnetic waves in the presence of stratified media,” J. Research NBS 61 (3), 205 (1958).
  25. E.D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

2014 (4)

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

2013 (9)

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
[Crossref]

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
[Crossref]

F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
[Crossref]

E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013).
[Crossref] [PubMed]

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

2012 (5)

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

E. S. Kadantsev and P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012).
[Crossref]

T. Cheiwchanchamnangij and W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012).
[Crossref]

A. Ramasubramaniam, “Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

2011 (2)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

1963 (1)

R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963).
[Crossref]

1958 (1)

J. R. Wait, “Transmission and reflection of electromagnetic waves in the presence of stratified media,” J. Research NBS 61 (3), 205 (1958).

Adam, S.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Aivazian, G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Al Mahboob, A.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Balendhran, S.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Berkelbach, T. C.

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
[Crossref]

Bhargava, S.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Bhaskaran, M.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Bolotin, K.I.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

CastroNeto, A. H.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Caudel, D.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

Chang, S.-W.

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

Cheiwchanchamnangij, T.

T. Cheiwchanchamnangij and W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012).
[Crossref]

Chen, C.-C.

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Chenet, D. A.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Chhowallam, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Chu, L.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Cronin, S. B.

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

da Jornada, F. H.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
[Crossref]

Dadap, J. I.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Duesberg, G. S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Eda, G.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Frindt, R. F.

R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963).
[Crossref]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Ghimire, N. J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Gunlycke, D.

F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan.2014.

Haglund, R.F.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

Hawrylak, P.

E. S. Kadantsev and P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012).
[Crossref]

He, K.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Heinz, T. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Herman, I. P.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Heydrich, S.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

Hirmer, M.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

Hone, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Hsu, Y.-T.

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Huang, J.-K.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Huser, F.

F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
[Crossref]

Hybertsen, M. S.

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
[Crossref]

Ippolito, S.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Jin, L.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Jin, W.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Jones, A. M.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Kadantsev, E. S.

E. S. Kadantsev and P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012).
[Crossref]

Kalantar-zadeh, K.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Kats, E.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Kaxiras, E.

E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013).
[Crossref] [PubMed]

Korn, T.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

Kumar, R.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Kuramochi, H.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

Lambrecht, W. R.

T. Cheiwchanchamnangij and W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012).
[Crossref]

Lee, C.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Li, L.-J.

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Li, S.-L.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

Li, X.-J.

J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .

Li, Z.

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

Liu, H.-L.

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

Liu, J. -T.

J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .

Liu, N.-H.

J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .

Louie, S. G.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
[Crossref]

Lunney, J. G.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Mak, K. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Mandrus, D. G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Martin, J.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

McEvoy, N.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Mirza, I.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Miyazaki, H.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

Nakaharai, S.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

Newaz, A.K.M.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

O’Brien, M.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Olsen, T.

F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
[Crossref]

Ou, J. Z.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Ozyilmaz, B.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

Prasai, D.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

Qiu, D. Y.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
[Crossref]

Ramasubramaniam, A.

A. Ramasubramaniam, “Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

Reichman, D. R.

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
[Crossref]

Robinson, S.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

Ross, J. S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Sadowski, J. T.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Santos, E. J. G.

E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013).
[Crossref] [PubMed]

Schmidt, H.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Schmutzler, J.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

Schuller, C.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

Serge,

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Shan, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Shen, C.-C.

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

Shi, Y.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Simsek, E.

F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan.2014.

Song, H.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

Sriram, S.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Thygesen, K. S.

F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
[Crossref]

Toh, M.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Tseng, F.

F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan.2014.

Tsukagoshi, K.

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

van der Zande, A. M.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Vasic, Z.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Wait, J. R.

J. R. Wait, “Transmission and reflection of electromagnetic waves in the presence of stratified media,” J. Research NBS 61 (3), 205 (1958).

Wang, S.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Wang, T.-B.

J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .

Winters, S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Wu, S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Xiao, D.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Xu, X.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Yan, J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Yang, H. Y.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Yao, W.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Yeh, P. C.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Yim, C.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

Yoffe, A. D.

R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963).
[Crossref]

Yu, H.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Yu, S. F.

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Zaki, N.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Zhang, D.

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Zhao, W.

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Zhuiykov, S.

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Ziegler, J.I.

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

ACS Nano (2)

S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “K.Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012).
[Crossref] [PubMed]

E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013).
[Crossref] [PubMed]

Appl. Phys. Express (1)

C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013).
[Crossref]

Appl. Phys. Lett (2)

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.  99, 102109 (2011).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett.  104, 103114 (2014).
[Crossref]

J. Research NBS (1)

J. R. Wait, “Transmission and reflection of electromagnetic waves in the presence of stratified media,” J. Research NBS 61 (3), 205 (1958).

Nano Lett. (1)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011).
[Crossref] [PubMed]

Nano Letters (1)

H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. CastroNeto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014).
[Crossref] [PubMed]

Nano Research (1)

Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research,  7, 973–980 (2014).
[Crossref]

Nanoscale (1)

S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2461 (2012).
[Crossref]

Nature Comm. (1)

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014).
[Crossref]

Nature Mat. (1)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013).
[Crossref]

Phys. Rev. B (4)

T. Cheiwchanchamnangij and W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012).
[Crossref]

A. Ramasubramaniam, “Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides,” Phys. Rev. B 86, 115409 (2012).
[Crossref]

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
[Crossref]

F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
[Crossref]

Phys. Rev. Lett (1)

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, and I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett.  111, 106801 (2013).
[Crossref]

Phys. Rev. Lett. (1)

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013).
[Crossref]

Proc. R. Soc. Lond. A (1)

R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963).
[Crossref]

Sci. Rep. (1)

Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013).
[Crossref] [PubMed]

Solid State Commun. (2)

A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, and K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013).
[Crossref]

E. S. Kadantsev and P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012).
[Crossref]

Other (3)

J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894 .

F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan.2014.

E.D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Raman spectrum of CVD monolayer MoS2 on a SiO2/Si substrate; inset is the optical image of as-synthesized films. (b) Measured differential transmittance through (green solid line) and reflectance from (red dashed line) MoS2 coated SiO2/Si and quartz substrates, respectively.
Fig. 2
Fig. 2 Real (top) and imaginary (bottom) parts of the complex electrical permittivity of monolayer MoS2. Black lines show the values extracted from our measurements, while blue dashed, magenta dashed-dotted, and red dotted lines are taken from references [4], [5], and [8], respectively.
Fig. 3
Fig. 3 Absorption spectrum of monolayer MoS2 on top of a SiO2/Si substrate (top) and residing in air (bottom). Blue dashed lines show experimental and theoretical results found in [6] and [18], respectively, whereas the red lines show our numerical results obtained with the εc values shown in Fig. 2.
Fig. 4
Fig. 4 Seven components of the εi, dottoed black line: Dashed gray line is the Gaussian term, all the other color lines are LD terms. Note that the first oscillator, j = 0 case that is also called Drude oscillator; has a very small imaginary part compared to others.
Fig. 5
Fig. 5 Absorption spectrum of MoS2 at T = 10 K (top) and T = 300 K. In (a), Vg = −107 V, corresponds to the undopped case, i.e. EF = 0 eV [6]. In (b) and (c), gate voltage values are Vg = (70, −40, 10, 30, 50, 80) V. As Vg is increased, the absorption decreases (from blue to yellow lines).

Tables (2)

Tables Icon

Table 1 Oscillation strength, damping coefficient, and resonance frequencies for the Lorentz-Drude oscillators used in (1). All coefficients are normalized with h ¯.

Tables Icon

Table 2 Exciton energies ( E 1 s Aand E 1 s B) calculated with the atomistic model at two different temperature values (10 K and 300 K) and Fermi energies (0 eV and 0.05 eV). All the exciton energies are presented in units of eV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε c L D ( ω ) = ε + j = 0 5 a j ω P 2 ω j 2 ω 2 i ω b j
ε i G ( ω ) = α exp ( ( h ¯ ω μ ) 2 2 σ 2 ) ,
ε r G ( ω ) = 1 π PV ε i G ( ω ) ω ω d ω .

Metrics