Abstract

Alternative materials for plasmonic devices have garnered much recent interest. A promising candidate material is titanium nitride. Although there is a substantial body of work on the formation of this material, its use for plasmonic applications requires a more systematic and detailed optical analysis than has previously been carried out. This paper describes an initial optimization of sputtered TiN thin films for plasmonic performance from visible into near-IR wavelengths. The metallic behavior of TiN films exhibits a sensitive dependence on the substrate and deposition details. We explored reactive and non-reactive sputter deposition of TiN onto various substrates at both room temperature and 600°C. Metallic character was compared for films grown under different conditions via spectroscopic ellipsometry and correlated with compositional and structural measurements via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and scanning transmission electron microscopy (STEM).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

Zih-Ying Yang, Yi-Hsun Chen, Bo-Huei Liao, and Kuo-Ping Chen
Opt. Mater. Express 6(2) 540-551 (2016)

Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films

Shunsuke Murai, Koji Fujita, Yohei Daido, Ryuichiro Yasuhara, Ryosuke Kamakura, and Katsuhisa Tanaka
Opt. Express 24(2) 1143-1153 (2016)

Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films

Ing-Song Yu, Hsyi-En Cheng, Chun-Chieh Chang, Yan-Wei Lin, Hou-Tong Chen, Yao-Chin Wang, and Zu-Po Yang
Opt. Mater. Express 7(3) 777-784 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  2. U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
    [Crossref] [PubMed]
  3. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  4. J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
    [Crossref]
  5. J. T. Guske, J. Brown, A. Welsh, and S. Franzen, “Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films,” Opt. Express 20(21), 23215–23226 (2012).
    [Crossref] [PubMed]
  6. S. Franzen, “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
    [Crossref]
  7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  8. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
    [Crossref] [PubMed]
  9. U. Guler, A. Boltasseva, and V. M. Shalaev, Science344, 263–264 (2014).
  10. D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
    [Crossref]
  11. A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  12. N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
    [Crossref]
  13. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  14. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
    [Crossref]
  15. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  16. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
    [Crossref] [PubMed]
  17. H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
    [Crossref]
  18. B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
    [Crossref]
  19. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
    [Crossref]
  20. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
    [Crossref]
  21. M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
    [Crossref]
  22. C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
    [Crossref]
  23. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
    [Crossref]
  24. N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
    [Crossref]
  25. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
    [Crossref]
  26. S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000).
    [Crossref]
  27. F. Chen, S.-W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
    [Crossref]
  28. J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
    [Crossref]
  29. B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
    [Crossref]
  30. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
    [Crossref]
  31. J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
    [Crossref]
  32. S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
    [Crossref]
  33. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
    [Crossref]
  35. L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997).
    [Crossref]
  36. J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4(6), 3059–3065 (1986).
    [Crossref]
  37. A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films 518(15), 4087–4090 (2010).
    [Crossref]
  38. A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
    [Crossref]
  39. C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
    [Crossref]
  40. P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995).
    [Crossref]
  41. N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992).
    [Crossref]
  42. T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
    [Crossref]
  43. M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
    [Crossref]
  44. N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).
  45. S. Ohya, B. Chiaro, A. Megrant, C. Neill, R. Barends, Y. Chen, J. Kelly, D. Low, J. Mutus, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, B. D. Schultz, C. J. Palmstrøm, B. A. Mazin, A. N. Cleland, and J. M. Martinis, “Sputtered TiN films for superconducting coplanar waveguide resonators,” arXiv:1306.2966 (2013).
  46. L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293 (1998).

2015 (2)

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

2014 (5)

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

F. Chen, S.-W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

2013 (2)

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (4)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

J. T. Guske, J. Brown, A. Welsh, and S. Franzen, “Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films,” Opt. Express 20(21), 23215–23226 (2012).
[Crossref] [PubMed]

2011 (4)

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

2010 (3)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films 518(15), 4087–4090 (2010).
[Crossref]

2009 (1)

N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).

2008 (1)

S. Franzen, “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

2007 (1)

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

2002 (1)

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

2000 (1)

S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000).
[Crossref]

1999 (1)

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

1998 (2)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
[Crossref]

L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293 (1998).

1997 (2)

A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
[Crossref]

L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997).
[Crossref]

1995 (1)

P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995).
[Crossref]

1994 (1)

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

1992 (3)

M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
[Crossref]

N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992).
[Crossref]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

1990 (1)

M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
[Crossref]

1988 (1)

T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
[Crossref]

1986 (2)

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4(6), 3059–3065 (1986).
[Crossref]

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

1985 (1)

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

1982 (1)

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

1981 (1)

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adachi, S.

S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000).
[Crossref]

Anders, A.

A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films 518(15), 4087–4090 (2010).
[Crossref]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Atwater, H. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Baiocchi, F. A.

M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
[Crossref]

Banks, D.

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

Barnett, S. A.

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Behaghel, J. M.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Berthier, S.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Biesinger, M. C.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Boltasseva, A.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, Science344, 263–264 (2014).

Brown, J.

Campbell, A. L.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chang, L.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

Chang, S. Y.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Chen, F.

Chen, N. C.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Chen, X.

F. Chen, S.-W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Cheng, G.-A.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Chou, C.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Chowdhury, R.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dai, V.-T.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

Dash, S.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Delfino, M.

M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
[Crossref]

Dionne, J. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

Do, H.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

dos Santos, M. P.

L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997).
[Crossref]

Emerson, A. B.

M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
[Crossref]

Ernsberger, C.

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

Eyink, K.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Fair, J. A.

M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Franzen, S.

J. T. Guske, J. Brown, A. Welsh, and S. Franzen, “Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films,” Opt. Express 20(21), 23215–23226 (2012).
[Crossref] [PubMed]

S. Franzen, “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Gerson, A. R.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Gornik, E.

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

Grant, J. T.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Greene, J. E.

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, Science344, 263–264 (2014).

Guske, J. T.

Haygarth, J. C.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Henda, K.

N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
[Crossref]

Ho, C. W.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Hodu, D.

M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
[Crossref]

Huang, R.

L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293 (1998).

Huang, Y. L.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Irudayaraj, J. M. K.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Jakubiak, R.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Jiang, Y.-L.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Johansson, B. O.

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jose, F.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kang, J. H.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

Karlsson, B.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kesri, R.

N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).

Kildishev, A. V.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Kim, J.

Kim, K. J.

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kirby, R. E.

P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kovacs, R.

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

Kunc, F.

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

Lafait, J.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Lau, L. W. M.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
[Crossref]

Li, J.-C.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Liang, C.-L.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Lien, W. C.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Lin, Y. R.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Liu, C. R.

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

Liu, H.-P.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Lu, W.

Ma, G.-J.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Mania, R.

A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
[Crossref]

Martinez, G.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Mayrhofer, P. H.

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

Meng, L.-J.

L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997).
[Crossref]

Miller, A. E.

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

Mitterer, C.

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

Morrish, A. A.

T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
[Crossref]

Musil, J.

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

Naik, G.

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Narayan, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Ni, X.

Nickerson, J.

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

Pachter, R.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Peng, C.-Y.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

Prieto, P.

P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995).
[Crossref]

Qadri, S. B.

T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
[Crossref]

Ramana, C. V.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Ramaseshan, R.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Rekas, M.

A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
[Crossref]

Rivory, J.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Rockett, A.

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Rodhammer, P.

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Saha, N. C.

N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992).
[Crossref]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
[Crossref]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Saoula, N.

N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).

Schroeder, J. L.

Seraphin, B. O.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Shalaev, V. M.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, Science344, 263–264 (2014).

Shimshock, R. P.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Singh, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Smart, R. St. C.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Smith, T.

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Steinmiller-Nethl, D.

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

Sundari, S. T.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Sundgren, J. E.

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Takahashi, M.

S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000).
[Crossref]

Tarniowy, A.

A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
[Crossref]

Thornton, J. A.

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4(6), 3059–3065 (1986).
[Crossref]

Thorpe, T. P.

T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
[Crossref]

Tiwari, P.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Tompkins, H. G.

N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992).
[Crossref]

Tyagi, A. K.

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

Vasile, M. J.

M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
[Crossref]

Wang, S.-W.

Welsh, A.

Wen, L.

L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293 (1998).

White, N.

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Wu, Y.-H.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

Yen, T.-C.

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

Yu, L.

Zhang, H.-F.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Zheleva, T.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Zheng, R.-T.

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Adv. Mater. (2)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992).
[Crossref]

Appl. Surf. Sci. (2)

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Faraday Discuss. (1)

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (7)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000).
[Crossref]

J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999).
[Crossref]

N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011).
[Crossref]

M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992).
[Crossref]

S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014).
[Crossref]

N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992).
[Crossref]

J. Mater. Sci. Technol. (1)

L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293 (1998).

J. Mod. Opt. (1)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998).
[Crossref]

J. Phys. Chem. C (1)

S. Franzen, “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

J. Plasma Fusion Res. Series (1)

N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009).

J. Vac. Sci. Technol. A (6)

T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988).
[Crossref]

M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990).
[Crossref]

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4(6), 3059–3065 (1986).
[Crossref]

C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986).
[Crossref]

P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995).
[Crossref]

B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

MRS Bull. (1)

J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

Nano Lett. (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Scr. (1)

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Surf. Coat. Tech. (3)

H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013).
[Crossref]

L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997).
[Crossref]

C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007).
[Crossref]

Thin Solid Films (5)

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films 518(15), 4087–4090 (2010).
[Crossref]

A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997).
[Crossref]

P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002).
[Crossref]

D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994).
[Crossref]

Other (2)

U. Guler, A. Boltasseva, and V. M. Shalaev, Science344, 263–264 (2014).

S. Ohya, B. Chiaro, A. Megrant, C. Neill, R. Barends, Y. Chen, J. Kelly, D. Low, J. Mutus, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, B. D. Schultz, C. J. Palmstrøm, B. A. Mazin, A. N. Cleland, and J. M. Martinis, “Sputtered TiN films for superconducting coplanar waveguide resonators,” arXiv:1306.2966 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The real part of the permitivvity (ε) for various TiN films compared to silver and gold. The shaded area is bordered on top by the most dielectric and on bottom, most metallic films we have sputtered, demonstrating the wide range over which the optical character of reactively sputtered TiN can be tuned. (b) The imaginary part of the permittivity (losses) is shown. Data for Au and Ag adapted from Johnson & Christy [33].

Fig. 2
Fig. 2

(a) High substrate temperature is required to non-reactively sputter smooth, metallic TiN thin films. The optical properties of films sputtered on different substrates ( MgO, – – Si, ··· Saph) at the same temperature vary only slightly. (b) For reactive sputtering of TiN, substrate choice strongly affects the optical properties. Depositions conditions: Ti target, 600°C, 200W DC, 12:8 sccm Ar:N2 reactive gas flow, 4mT

Fig. 3
Fig. 3

Finer control during reactive sputtering is achieved by varying the reactive gas concentration. TiN films are deposited at 600°C (a–c) or 20°C plus an additional 100V bias (d–f), with varying amounts of Ar:N2 gas (sccm) Substrates are (a,d) silicon (b,e) sapphire (c,f) MgO. Reactive sputtering onto MgO substrates can produce highly metallic, epitaxial films. Non-reactive sputtering produced the most metallic films on Si and Sapphire.

Fig. 4
Fig. 4

(a) XRD 2-Theta scans of textured TiN films sputtered onto MgO at high temperature vs. low temperature with additional applied bias. Both films have preferred orientation in the (200) direction (b) Inset of the TiN and MgO (200) peaks shows extended shoulders near 42.0° and 43.3° in the film deposited with additional bias

Fig. 5
Fig. 5

STEM images of (a) reactively sputtered TiN thin film on a MgO substrate displaying textured epitaxial growth of a smooth, metallic thin film under these deposition conditions. (b) Detailed view of TiN film from (a) showing textured epitaxial growth at 600°C, 12:8 Ar:N2 on MgO (c) Detailed view of a different TiN film grown at 20°C with a 100V bias and 12:4 sccm Ar:N2 on MgO showing polycrystallinity. (d) Real and imaginary permittivity data for the films shown in (b) and (c)

Fig. 6
Fig. 6

Comparison of XPS N1s data for our most and least metallic films sputtered at 600°C without bias, and 20°C with bias, on MgO substrates (a–b) Nitrogen-rich deposition (8:12 Ar:N2 sccm) leads to a film with higher oxynitride composition as compared to the deposition under the lower nitrogen flow (c–d). Adding a substrate bias while sputtering reduces oxynitride content, even at room temperature (e–f). The films shown in Fig. 6(c–f) correspond to those shown in Figs. 4 and 5 and are colored accordingly.

Tables (1)

Tables Icon

Table 1 Atomic % N1s bonding in nitride and oxynitride

Metrics