Abstract

Lutetium Aluminum Garnet (LuAG) is a garnet isostructure similar to Yttrium Aluminum Garnet (YAG). High quality Ho3+ doped YAG and LuAG transparent polycrystalline ceramics were fabricated successfully by a reactive sintering method under vacuum. The microstructures, absorption spectrum, fluorescence spectrum and the laser performances of Ho:YAG and Ho:LuAG ceramics were systematically investigated. The in-line transmittances of Ho:YAG ceramic in the visible and infrared region are higher than 82% and 84%. The absorption coefficient of 1.0 at.% Ho:LuAG is 0.88 cm−1 at 1906 nm and its absorption cross section is 0.62 × 10−20 cm2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb:LuAG laser ceramics: a promising high power laser gain medium

Dewei Luo, Jian Zhang, Changwen Xu, Hao Yang, Hui Lin, Haiyong Zhu, and Dingyuan Tang
Opt. Mater. Express 2(10) 1425-1431 (2012)

Laser grade Yb:LuAG transparent ceramic prepared by nanocrystalline pressure-less sintering in reducing H2

Ding Zhou, Ying Shi, Jianjun Xie, Dimeng Chen, Jun Dong, Ken-ichi Ueda, and Jiayue Xu
Opt. Mater. Express 7(4) 1274-1280 (2017)

Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser

Lin Ge, Jiang Li, Zhiwei Zhou, Haiyun Qu, Manjiang Dong, Yan Zhu, Tengfei Xie, Wei Li, Min Chen, Huamin Kou, Yun Shi, Yubai Pan, Xiqi Feng, and Jingkun Guo
Opt. Mater. Express 4(5) 1042-1049 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09- μm Ho:YAG laser,” Opt. Lett. 17(10), 736–738 (1992).
    [Crossref] [PubMed]
  2. A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  3. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
    [Crossref] [PubMed]
  4. H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [PubMed]
  5. T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
    [Crossref]
  6. M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
    [Crossref]
  7. H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
    [Crossref]
  8. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm,” Opt. Express 21(3), 3926–3931 (2013).
    [Crossref] [PubMed]
  9. N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B 20(6), 1212–1219 (2003).
    [Crossref]
  10. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
    [Crossref]
  11. D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
    [Crossref]
  12. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
    [Crossref] [PubMed]
  13. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Opt. Lett. 39(10), 2884–2887 (2014).
    [Crossref] [PubMed]
  14. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  15. V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
    [Crossref]
  16. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
    [Crossref]
  17. A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
    [Crossref]
  18. H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
    [Crossref]
  19. J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
    [Crossref]
  20. S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
    [Crossref]
  21. A. Ikesue and K. Yoshida, “Scattering in polycrystalline Nd: YAG lasers,” J. Am. Ceram. Soc. 81(8), 2194–2196 (1998).
    [Crossref]

2014 (1)

2013 (2)

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm,” Opt. Express 21(3), 3926–3931 (2013).
[Crossref] [PubMed]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

2012 (2)

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

2011 (1)

2008 (2)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
[Crossref]

2007 (2)

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2006 (3)

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
[Crossref] [PubMed]

2004 (1)

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

2003 (1)

2000 (1)

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

1998 (2)

D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
[Crossref]

A. Ikesue and K. Yoshida, “Scattering in polycrystalline Nd: YAG lasers,” J. Am. Ceram. Soc. 81(8), 2194–2196 (1998).
[Crossref]

1996 (1)

1995 (1)

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

1992 (1)

Ahmed, M. A.

Arisholm, G.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Barnes, N. P.

Castillo, V.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Chen, H.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Chen, L. D.

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

Dumm, J. Q.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Esterowitz, L.

Filer, E. D.

Frukacz, Z.

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

Fuhrberg, P.

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Graf, T.

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Hart, D. W.

Huber, G.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
[Crossref]

A. Ikesue and K. Yoshida, “Scattering in polycrystalline Nd: YAG lasers,” J. Am. Ceram. Soc. 81(8), 2194–2196 (1998).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Jani, M.

Kaczkan, M.

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

Kamata, K.

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

Kochawattana, S.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Koopmann, P.

Lamrini, S.

Lee, S. H.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Lippert, E.

Luo, D. W.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
[Crossref]

Ma, J.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

Malinowski, M.

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

Messing, G. L.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Nakao, H.

Nash-Stevenson, S. K.

D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
[Crossref]

Nicolas, S.

Numazawa, T.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

Patel, D. N.

D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
[Crossref]

Qin, X. P.

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Quarles, G.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

Reddy, B. R.

D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
[Crossref]

Rong, T. J.

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

Rustad, G.

Schäfer, M.

Scholle, K.

Shen, D. Y.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Shirakawa, A.

Stenersen, K.

Stoneman, R. C.

Szuflinska, M.

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

Tang, D. Y.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Ueda, K.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Opt. Lett. 39(10), 2884–2887 (2014).
[Crossref] [PubMed]

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B 20(6), 1212–1219 (2003).
[Crossref]

Wang, S. W.

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

Wang, Y.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

Weichelt, B.

Wentsch, K.

Wnuk, A.

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

Yagi, H.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Opt. Lett. 39(10), 2884–2887 (2014).
[Crossref] [PubMed]

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

Yanagitani, T.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Demonstration of a Yb3+-doped Lu3Al5O12 ceramic thin-disk laser,” Opt. Lett. 39(10), 2884–2887 (2014).
[Crossref] [PubMed]

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

Yang, H.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Yang, X. F.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Yoshida, K.

A. Ikesue and K. Yoshida, “Scattering in polycrystalline Nd: YAG lasers,” J. Am. Ceram. Soc. 81(8), 2194–2196 (1998).
[Crossref]

Zhang, J.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

Zhang, Q. T.

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Zhao, T.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[PubMed]

Appl. Opt. (1)

C. R. Phys. (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Ceram. Int. (1)

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int. 33(5), 711–714 (2007).
[Crossref]

J. Alloy. Comp. (1)

M. Malinowski, Z. Frukacz, M. Szuflinska, A. Wnuk, and M. Kaczkan, “Optical transition of Ho3+ in YAG,” J. Alloy. Comp. 300–301, 389–394 (2000).
[Crossref]

J. Am. Ceram. Soc. (5)

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Poly-crystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, “Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders,” J. Am. Ceram. Soc. 87(6), 1072–1075 (2004).
[Crossref]

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[Crossref]

A. Ikesue and K. Yoshida, “Scattering in polycrystalline Nd: YAG lasers,” J. Am. Ceram. Soc. 81(8), 2194–2196 (1998).
[Crossref]

A. Ikesue, I. Furusato, and K. Kamata, “Fabraction of polycrystalline transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–258 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (4)

H. Yang, X. P. Qin, J. Zhang, J. Ma, D. Y. Tang, S. W. Wang, and Q. T. Zhang, “The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic,” Opt. Mater. 34(6), 940–943 (2012).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008).
[Crossref]

D. N. Patel, B. R. Reddy, and S. K. Nash-Stevenson, “Spectroscopic and two-photon upconversion studies of Ho3+-doped Lu3Al5O12,” Opt. Mater. 10(3), 225–234 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laser experiment setup.

Fig. 2
Fig. 2

The XRD spectrum of the Ho:LuAG transparent ceramic.

Fig. 3
Fig. 3

The in-line transmittances of Ho:YAG and Ho:LuAG transparent ceramics.

Fig. 4
Fig. 4

SEM microstructure of mirror-polished surface of (a1) and (a2) 1.0 at.% Ho:YAG, (b1) and (b2) 1.0 at.% Ho:LuAG.

Fig. 5
Fig. 5

Absorption spectrum of Ho:YAG and Ho:LuAG transparent ceramics.

Fig. 6
Fig. 6

The fluorescence spectrum of 1.0at.% Ho:YAG and Ho:LuAG.

Fig. 7
Fig. 7

Laser performance of (A)Ho:YAG and (B)Ho:LuAG ceramics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ a = α a Ν
Ν= ρ N A M C s

Metrics