Abstract

The optical property variation induced by temperature change for PbSe quantum dot (QD)-filled hollow core fiber was investigated as a function of particle size, waveguide length, and doping concentration. The temperature coefficients of emission peak and intensity in QD-filled fiber were obviously size-dependent. The fiber filled with 4.5 nm PbSe QDs had better temperature stability in emission wavelength. The mechanism of the output loss in fiber was established, based on the thermal quenching of QD luminescence and the guided mode leakage arising from the temperature dependent refractive indexes of the fiber core and the cladding.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. B100(31), 13226–13239 (1996).
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
    [CrossRef]
  3. W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
    [CrossRef]
  4. K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
    [CrossRef]
  5. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
    [CrossRef]
  6. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
    [CrossRef]
  7. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
    [CrossRef] [PubMed]
  8. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol.26(11), 1404–1410 (2008).
    [CrossRef]
  9. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
    [CrossRef]
  10. C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
    [CrossRef]
  11. G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
    [CrossRef]
  12. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
    [CrossRef]
  13. C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
    [PubMed]
  14. P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
    [CrossRef]
  15. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
    [CrossRef]
  16. S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater.56(2), 259–264 (2008).
    [CrossRef]
  17. Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
    [CrossRef] [PubMed]
  18. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res.33(11), 773–780 (2000).
    [CrossRef] [PubMed]
  19. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
    [CrossRef]
  20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  21. J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
    [CrossRef]
  22. A. Hreibi, F. Gérôme, J.-L. Auguste, Y. Zhang, W. W. Yu, and J.-M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
    [CrossRef] [PubMed]
  23. L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
    [CrossRef]
  24. A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol.1(3), 498–509 (1983).
    [CrossRef]
  25. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt.18(9), 1445–1448 (1979).
    [CrossRef] [PubMed]
  26. P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
    [CrossRef] [PubMed]
  27. W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).
  28. S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
    [CrossRef] [PubMed]
  29. Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
    [CrossRef] [PubMed]
  30. A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
    [CrossRef]
  31. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
    [CrossRef]
  32. Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
    [CrossRef] [PubMed]
  33. Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
    [CrossRef]
  34. Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
    [CrossRef] [PubMed]
  35. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).
  36. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
    [CrossRef]
  37. K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).
  38. L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
    [CrossRef] [PubMed]
  39. S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, “Optical repetition rate stabilization of a mode-locked all-fiber laser,” Opt. Express21(4), 4889–4895 (2013).
    [CrossRef] [PubMed]
  40. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
    [CrossRef] [PubMed]

2014 (1)

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

2013 (4)

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, “Optical repetition rate stabilization of a mode-locked all-fiber laser,” Opt. Express21(4), 4889–4895 (2013).
[CrossRef] [PubMed]

2011 (6)

A. Hreibi, F. Gérôme, J.-L. Auguste, Y. Zhang, W. W. Yu, and J.-M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

2010 (4)

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

2009 (2)

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

2008 (3)

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
[CrossRef]

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater.56(2), 259–264 (2008).
[CrossRef]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol.26(11), 1404–1410 (2008).
[CrossRef]

2007 (3)

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

2005 (1)

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

2004 (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

2003 (3)

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

2002 (2)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

2001 (1)

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

2000 (3)

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res.33(11), 773–780 (2000).
[CrossRef] [PubMed]

1998 (1)

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

1996 (2)

A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. B100(31), 13226–13239 (1996).

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

1983 (1)

A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol.1(3), 498–509 (1983).
[CrossRef]

1979 (1)

Abel, K. A.

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

Aigle, M.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. B100(31), 13226–13239 (1996).

Anni, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Askari, A. A.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

Auguste, J.-L.

Bahrampour, A. R.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Bauer, G.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Bawendi, M. G.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Beard, M. C.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Blondy, J.-M.

Bulovic, V.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

Chen, C.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Cheng, C.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol.26(11), 1404–1410 (2008).
[CrossRef]

Cheng, X.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Choudhury, K. R.

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

Chu, H.

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

Cingolani, R.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Coe-Sullivan, S.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

Colvin, V. L.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Cui, Q.

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Cui, T.

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

Dai, Q.

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

De Giorgi, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Deppe, D. G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

Du, H.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Eisler, H.-J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Falkner, J. C.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Fallnich, C.

Farahi, F.

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

Feiner, L. F.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
[CrossRef]

Feng, Y.

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

Gérôme, F.

Gu, P.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Gu, Z.

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

Harbold, J. M.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Hartog, A.

A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol.1(3), 498–509 (1983).
[CrossRef]

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Heiss, W.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Hellwig, T.

Hocker, G. B.

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Hreibi, A.

Hu, M. Z.

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

Jiang, H.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Jiang, Y.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

Johnson, J. C.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Jorge, P.

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

Kershaw, S. V.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Krauss, T. D.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Krishnan, R.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Kudera, S.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Leertouwer, H. L.

Li, S.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

Li, X.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Liang, J.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Lin, L.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

Liu, W.

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

Liu, Y.

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Luther, J. M.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Ma, D.

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Manna, L.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Martins, M.

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

Meng, C.

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Midgett, A. G.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Morello, G.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Narayanaswamy, A.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
[CrossRef]

Nozik, A. J.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

O’Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Ohulchanskyy, T. Y.

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

Pascher, H.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Pellegrino, D. J.

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

Prasad, P. N.

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

Qiao, H.

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

Rahimi, L.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

Reda, S. M.

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater.56(2), 259–264 (2008).
[CrossRef]

Rieger, S.

Rogach, A. L.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

Rooholamini, H.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

Sahoo, Y.

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

Santos, J.

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

Schwarzl, T.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Semonin, O. E.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Seo, J.

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

Shih, B. S.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Silcox, J.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Springholz, G.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Stavenga, D. G.

Steckel, J. S.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

Thomas, M. G.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Tong, L.

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Trindade, T.

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

van der Zaag, P. J.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
[CrossRef]

van Veggel, F. C. J. M.

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

Vavra, I.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

Walbaum, T.

Wang, P.

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Wang, Y.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Wang, Y. A.

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
[CrossRef]

Wilts, B. D.

Wise, F. W.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res.33(11), 773–780 (2000).
[CrossRef] [PubMed]

Wu, H.

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Xiao, Y.

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Yang, H.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

Yang, J.-M.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

Young, J. F.

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

Yu, W.

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Yu, W. W.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

A. Hreibi, F. Gérôme, J.-L. Auguste, Y. Zhang, W. W. Yu, and J.-M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

Zhai, W.

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

Zhang, H.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Zhang, K.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

Zhang, T.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Zhang, Y.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

A. Hreibi, F. Gérôme, J.-L. Auguste, Y. Zhang, W. W. Yu, and J.-M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Zhao, J.

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

Zhao, M.

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Zhao, Y.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

Zou, B.

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

Acc. Chem. Res. (1)

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res.33(11), 773–780 (2000).
[CrossRef] [PubMed]

ACS Nano (1)

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009).
[CrossRef] [PubMed]

Acta Mater. (1)

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater.56(2), 259–264 (2008).
[CrossRef]

Adv. Mater. (2)

C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011).
[PubMed]

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998).
[CrossRef]

K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005).
[CrossRef]

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Chem. Mater. (4)

W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003).
[CrossRef]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004).
[CrossRef]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

J. Lightwave Technol. (2)

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol.26(11), 1404–1410 (2008).
[CrossRef]

A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol.1(3), 498–509 (1983).
[CrossRef]

J. Nanopart. Res. (2)

L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013).
[CrossRef]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011).
[CrossRef]

J. Phys. Chem. B (1)

A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. B100(31), 13226–13239 (1996).

J. Phys. Chem. C (3)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008).
[CrossRef]

W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).

J. Phys. Chem. Lett. (2)

K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).

Langmuir (2)

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011).
[CrossRef] [PubMed]

Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010).
[CrossRef] [PubMed]

Nano Lett. (2)

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007).
[CrossRef] [PubMed]

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Nanoscale (1)

P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009).
[CrossRef]

C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Science (2)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of PbSe QD-doped liquid-core fiber. Inset: optical image of a silica capillary filled with liquid nanoparticle solution (PbSe dissolved in tetrachloroethylene) and its equivalent step refractive index profile.

Fig. 2
Fig. 2

Left panel: absorption and photoluminescence spectra recorded at room temperature for five different sizes PbSe QDs: (a) 3.3 nm; (b) 3.8 nm; (c) 4.5 nm; (d) 4.9 nm; (e) 5.8 nm. Right panel: the variations of filled fiber output spectra of different sizes at different temperatures: (f) 3.3 nm; (g) 3.8 nm; (h) 4.5 nm; (i) 4.9 nm; (j) 5.8 nm.

Fig. 3
Fig. 3

The temperature-dependent emission peak position for different sizes of PbSe QDs solution and the PbSe QDs-filled liquid-core fibers: (a) 3.3 nm; (b) 4.5 nm; (c) 5.8 nm.

Fig. 4
Fig. 4

Comparison between theoretical modeling and experimental results related to the output intensity of PbSe QD-filled liquid-core fibers and free QDs solution: (a) 3.3 nm, (b) 4.5 nm, (c) 5.8 nm; the integrated PL intensities of PbSe QDs with different particle sizes as a function of 1/kBT (d); the refractive indexes of solvent TCE, PbSe QDs dissolved in TCE solvent and silica fiber at different temperatures (e); the ratio of the contribution to the decrease of emission intensity from thermal quenching to modes leakage for 4.5 nm QDs (f).

Fig. 5
Fig. 5

The temperature-dependent emission peak positions (a) and intensity (b) of 4.5 nm PbSe QD-filled fibers with different fiber lengths; the temperature-dependent emission peak positions (c) and intensity (d) of 4.5 nm PbSe QD-filled fibers with different doping concentration.

Tables (3)

Tables Icon

Table 1 Fitting parameters based on Eq. (1)

Tables Icon

Table 2 Refractive index of PbSe/TCE solution with different particle sizes and the same concentration of 7.2 × 1015 QDs/cm3 at room temperature

Tables Icon

Table 3 Refractive index of PbSe/TCE solution with the different concentrations and the same particle size of 4.5 nm at room temperature

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I P L ( T ) = I 0 1 + A exp ( E a K B T ) + B [ exp ( E L O K B T ) 1 ] m ,
P s ( r j ,λ)= [ J 0 ( V j ) J 0 ( V 1 ) ] 2 P s (r ) 1 ,
V j = 2π λ n core 2 n clad 2 r j ,
P s (λ)= j=1 M P s ( r j ,λ)= P s ( r 1 ) [ J 0 ( V 1 ) ] 2 j=1 M [ J 0 ( V j ) ] 2 ,
M(T)= 4 a 2 λ 2 ( n core 2 (T) n clad 2 (T)),

Metrics