Abstract

We propose fast tuning of a Fano resonance (FR) in a three dimensional metamaterial (MM). The MM consists of an elliptical nanohole array (ENA) embedded through a metal/ phase-change material (PCM)/metal multilayer. The results show that the interference between the electric and magnetic resonances can be significantly enhanced when the elliptical nanoholes occupy the sites of a rectangular lattice, thus providing a FR with a higher value quality factor (Q) compared to the ENA with a square lattice. By switching the PCM (Ge2Sb2Te5) between its amorphous and crystalline states, the FR peak can be red-shifted by up to 42%. The FR can be tuned with a ultra low energy mid-infrared laser pulse of 0.38 ns duration and an intensity of 3.2μW/μm2.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  2. W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
    [CrossRef]
  3. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
    [CrossRef] [PubMed]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  5. S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
    [CrossRef]
  6. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  7. J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
    [CrossRef] [PubMed]
  8. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
    [CrossRef] [PubMed]
  9. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
    [CrossRef] [PubMed]
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  11. O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
    [CrossRef]
  12. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
    [CrossRef] [PubMed]
  13. D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
    [CrossRef] [PubMed]
  14. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
    [CrossRef] [PubMed]
  15. M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
    [CrossRef]
  16. H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
    [CrossRef]
  17. O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
    [CrossRef] [PubMed]
  18. B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
    [CrossRef]
  19. N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
    [CrossRef]
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
    [CrossRef] [PubMed]
  21. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  22. X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
    [CrossRef]
  23. P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
    [CrossRef]
  24. Y. H. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18(20), 20912–20917 (2010).
    [CrossRef] [PubMed]
  25. R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).
  26. J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
    [CrossRef]
  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
    [CrossRef] [PubMed]
  28. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
    [CrossRef] [PubMed]
  29. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
    [CrossRef]
  30. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
    [CrossRef] [PubMed]
  31. X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
    [CrossRef] [PubMed]
  32. Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
    [CrossRef]
  33. F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
    [CrossRef]
  34. T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
    [CrossRef]
  35. T. Cao, C. Wei, R. Simpson, L. Zhang, and M. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express3(8), 1101–1110 (2013).
    [CrossRef]
  36. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
    [CrossRef] [PubMed]
  37. T. Cao, R. Simpson, and M. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
    [CrossRef]
  38. T. Cao, L. Zhang, R. Simpson, and M. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
    [CrossRef]
  39. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
    [CrossRef] [PubMed]
  40. J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013).
    [CrossRef] [PubMed]
  41. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
    [CrossRef] [PubMed]
  42. A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
    [CrossRef] [PubMed]
  43. J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
    [CrossRef]
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  45. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  46. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
    [CrossRef] [PubMed]
  47. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  48. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
    [CrossRef]

2014

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

2013

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

T. Cao, R. Simpson, and M. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
[CrossRef]

J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013).
[CrossRef] [PubMed]

T. Cao, L. Zhang, R. Simpson, and M. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

T. Cao, C. Wei, R. Simpson, L. Zhang, and M. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express3(8), 1101–1110 (2013).
[CrossRef]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

2012

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
[CrossRef]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
[CrossRef] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
[CrossRef]

2011

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

2010

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Y. H. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18(20), 20912–20917 (2010).
[CrossRef] [PubMed]

2009

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

2008

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

2007

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Alonso, M. I.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Alu, A.

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Azad, A. K.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Bao, K.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Belotelov, V. I.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Beneš, L.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

Brener, I.

Campoy-Quiles, M.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Cao, T.

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Chen, H.

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chigrin, D. N.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Cho, H.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Choi, E. M.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cryan, M.

Cryan, M. J.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Ding, P.

Ding, W.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
[CrossRef]

Dobynde, M. I.

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Dolgova, T. V.

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Fan, C. Z.

Fan, J. A.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Fedyanin, A. A.

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Fons, P.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Frumar, M.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Fu, Y.

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

Fu, Y. L.

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

Fukaya, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Garriga, M.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gong, Q.

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

Gong, Q. H.

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
[CrossRef]

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Han, J.

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

He, J. N.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Hira, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

Homma, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

Hu, X.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

Hu, X. Y.

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Huang, Y.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

Jang, W. H.

Jia, Q. X.

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Jiang, S. M.

D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Kim, A.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Kim, K.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Kim, S. G.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Kolobov, A. V.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Krbal, M.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Kuwamura, K.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Lee, Y. P.

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Lheurette, É.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

Li, B.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Li, P. C.

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

Li, S. B.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Li, X.

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Liang, E. J.

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Lippens, D.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

Liu, H. L.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Liu, R.

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Liu, S.

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Liu, X. J.

D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
[CrossRef] [PubMed]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

Lu, Y. H.

Luk’yanchuk, B.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
[CrossRef]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Maß, T. W. W.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Michel, A. K.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Miyamaru, F.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

O’Hara, J. F.

Ong, C. K.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Orava, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Pal, U.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Peña-Rodríguez, O.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Prikryl, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Qiu, C.-W.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
[CrossRef]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Rhee, J. Y.

Rivera, A.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Rodríguez-Fernández, L.

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Saiki, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

Salinga, M.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Schönauer, K.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Seo, B.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Shcherbako, M. R.

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Sheng, P.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Shvets, G.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Šik, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Simpson, R.

Simpson, R. E.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
[CrossRef]

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Smirnova, E.

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Soltani, N.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Takeda, M. W.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Taubner, T.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Tominaga, J.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Trugman, S. A.

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Tsai, D.-P.

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Uchiyama, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Wágner, T.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

Wang, J. Q.

Wang, P.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

T. Cao, C. Wei, R. Simpson, L. Zhang, and M. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express3(8), 1101–1110 (2013).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Wen, W. J.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

Wu, D. J.

D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
[CrossRef] [PubMed]

Wu, J. B.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Wu, X. J.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Wuttig, M.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Xiao, X.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Xiong, J.

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Xu, C. X.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Xue, Q. Z.

Yagi, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Yang, H.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Yang, Z.

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Yu, E. T.

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

Zhang, F.

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

Zhang, G. B.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Zhang, L.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

T. Cao, C. Wei, R. Simpson, L. Zhang, and M. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express3(8), 1101–1110 (2013).
[CrossRef]

T. Cao, L. Zhang, R. Simpson, and M. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Zhang, M. Y.

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, Y. B.

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

Zhao, L.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Zhao, Y.

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zheng, L. J.

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Zhu, Y.

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Acc. Chem. Res.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

ACS Nano

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Adv. Mater.

X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011).
[CrossRef] [PubMed]

Adv. Optical Mater.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013).
[CrossRef]

Appl. Phys. Lett.

F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013).
[CrossRef]

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013).
[CrossRef]

H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011).
[CrossRef]

P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011).
[CrossRef]

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

J. Appl. Phys.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008).
[CrossRef]

J. Chem. Phys.

D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. C

O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011).
[CrossRef]

S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Nano Lett.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013).
[CrossRef] [PubMed]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010).
[CrossRef] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nanophoto.

R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).

Nanoscale

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012).
[CrossRef] [PubMed]

Nat Commun

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Nat. Mater.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Phys. Rev. Lett.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Sci Rep

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014).
[CrossRef] [PubMed]

Science

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of the MDM structure consisting of a 160nm thick Ge2Sb2Te5 dielectric layer between two 30nm thick Au films perforated with a square array of elliptical holes suspended in a vacuum. (b) Illustration of the element of ENA, the horizontal lattice constant (Lx) and vertical lattice constant (Ly) are 400nm (Lx = Ly = 400nm) and hole diameters are d1 = 320nm, d2 = 150nm. (c) Schematic of the MDM structure consisting of a 160nm thick Ge2Sb2Te5 dielectric layer between two 30nm thick Au films perforated with a rectangular array of elliptical holes suspended in a vacuum. (d) Illustration of the element of ENA, the lattice constants are Lx = 700nm, Ly = 400nm, hole diameters are d1 = 320nm, d2 = 150nm.

Fig. 2
Fig. 2

Dielectric constant (a) ε1(ω) vs wavelength, (b) ε2(ω) vs wavelength for both amorphous and crystalline phases of Ge2Sb2Te5.

Fig. 3
Fig. 3

The comparison of (a) the transmittance, (b) the reflectance between square periodic MDM-ENA (Lx = Ly = 400nm) and rectangular periodic MDM-ENA (Lx = 700nm, Ly = 400nm) with amorphous Ge2Sb2Te5 at normal incidence.

Fig. 4
Fig. 4

3D- FEM simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity distribution and JD distribution along β plane for the square periodic MDM-ENA (Lx = Ly = 400nm), at normal incident angle where λ = 2090nm; Simulation of (c) total electric field intensity distribution, (d) total magnetic field intensity distribution and JD distribution for rectangular periodic MDM-ENA (Lx = 700nm, Ly = 400nm) at normal incident angle where λ = 2025nm.

Fig. 5
Fig. 5

The comparison of (a) the transmittance, (b) the reflectance between rectangular periodic MDM-ENA with amorphous Ge2Sb2Te5 and crystalline Ge2Sb2Te5.

Fig. 6
Fig. 6

3D- FEM simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity distribution and JD distribution along β plane for the amorphous rectangular periodic MDM-ENA where λ = 2025nm. (c) total electric field intensity distribution, (d) total magnetic field intensity distribution and JD distribution for the crystalline rectangular periodic MDM-ENA where λ = 2880nm

Fig. 7
Fig. 7

3D- FEM simulation of heat power irradiating on an amorphous rectangular periodic MDM-ENA located at the beam center, where the solid red line presents the heat power irradiating on the structures under normal incident intensity of 3.2 μW/μm2, the dash red line is the temperature of the amorphous Ge2Sb2Te5 layer during one pulse

Fig. 8
Fig. 8

The temperature distribution of the unit cell of an amorphous rectangular periodic MDM-ENA along β plane at (a) 0.38ns and (b) 0.68ns, where the color image indicates the temperature distribution and the arrows indicate the heat flux.

Fig. 9
Fig. 9

(a) Schematic of the MDM-ENA consisting of a 160nm thick amorphous Ge2Sb2Te5 dielectric layer between two 30nm thick Au films, the lattice constants are Lx = 700nm, Ly = 400nm, hole diameters are d1 = 320nm, d2 = 150nm; (b) Schematic of the MDM-RNA consisting of a 160nm thick Ge2Sb2Te5 dielectric layer between two 30nm thick Au films, the lattice constants are Lx = 700nm, Ly = 400nm, hole diameters are d3 = 220nm;(c)the comparison of the reflectance between the MDM-ENA and MDM-RNA with amorphous Ge2Sb2Te5 at normal incidence.

Fig. 10
Fig. 10

3D- FEM simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity and JD distribution for the amorphous rectangular periodic MDM-ENA where λ = 2025nm;(c) total electric field intensity distribution, (d) total magnetic field intensity and JD distribution along β plane for the amorphous rectangular periodic MDM-RNA where λ = 1925nm.

Fig. 11
Fig. 11

3D- FEM simulation of heat power irradiating on an amorphous rectangular periodic MDM-ENA and MDM-RNA located at the beam center, where the solid red line presents the heat power irradiating on the rectangular periodic MDM-ENA under normal incident intensity of 3.2 μW/μm2, the dash red line is the temperature of the amorphous Ge2Sb2Te5 layer of the MDM-ENA during one pulse; the solid blue line presents the heat power irradiating on the rectangular periodic MDM-RNA under normal incident intensity of 3.2 μW/μm2,the dash blue line is the temperature of the amorphous Ge2Sb2Te5 layer of the MDM-RNA during one pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F l ( r ) = 2 P 0 π w 2 f r exp ( - 2 r 2 w 2 )

Metrics