Abstract

Broadband circular and linear polarization conversions have been proposed in the paper by using thin birefringent reflective metasurfaces, which are composed of two orthogonal I-shaped structures placed on the top of a printed circuit broad with grounded plane on the bottom. We show that the metasurface manipulates the reflective phases of two orthogonal linearly-polarized waves independently by changing the dimensions of I-shaped structure. Hence, the polarization states of a linearly-polarized incident wave with normal incidence can be manipulated as desired after reflected by the anisotropic metasurface. Two polarization conversions have been presented by using such thin birefringent reflective metasurfaces: from linearly-polarized wave to circularly-polarized wave, and from linearly-polarized wave to cross-polarized wave. The metasurfaces work at microwave frequency, and the axial ratio better than 1dB is achieved within fractional bandwidth of 15% for circular polarization. Numerical and experiment results demonstrate good polarization conversions in a broad frequency band, which have excellent agreements with the theoretical calculations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  2. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
    [CrossRef]
  3. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
    [CrossRef]
  4. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010).
    [CrossRef]
  5. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
    [CrossRef]
  6. J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
    [CrossRef]
  7. P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
    [CrossRef] [PubMed]
  8. M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett.38(4), 462–464 (2013).
    [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
    [CrossRef] [PubMed]
  11. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
    [CrossRef] [PubMed]
  12. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014).
    [CrossRef] [PubMed]
  13. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013).
    [CrossRef]
  14. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
    [CrossRef] [PubMed]
  15. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
    [CrossRef]
  16. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express18(22), 23196–23203 (2010).
    [CrossRef] [PubMed]
  17. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
    [CrossRef]
  18. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
    [CrossRef] [PubMed]
  19. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
    [CrossRef] [PubMed]
  20. I. Sohail, Y. Ranga, K. P. Esselle, and S. G. Hay, “A linear to circular polarization converter based on Jerusalem-Cross frequency selective surface,” 2013 7th European Conference on Antennas and Propagation (EuCAP), 2141–2143 (2013).
  21. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
    [CrossRef]
  22. J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antenn. Propag.58(5), 1494–1502 (2010).
    [CrossRef]

2014 (4)

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014).
[CrossRef] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

2013 (7)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013).
[CrossRef]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
[CrossRef] [PubMed]

M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett.38(4), 462–464 (2013).
[CrossRef] [PubMed]

2012 (3)

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

2010 (3)

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antenn. Propag.58(5), 1494–1502 (2010).
[CrossRef]

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express18(22), 23196–23203 (2010).
[CrossRef] [PubMed]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bardou, N.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Boreman, G. D.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Bouchon, P.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Chen, P.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Cui, T. J.

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Dupuis, C.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Farmahini-Farahani, M.

Feng, Y.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Ginn, J. C.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Grbic, A.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013).
[CrossRef]

Guan, C. Y.

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

Haïdar, R.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Huang, C.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express18(22), 23196–23203 (2010).
[CrossRef] [PubMed]

Jaeck, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Jiang, T.

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express18(22), 23196–23203 (2010).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Lail, B. A.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Lévesque, Q.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Lin, L.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, X. C.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Lopez-Alonso, J. M.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Luo, X.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Lv, T. T.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Ma, H. F.

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Ma, X.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Makhsiyan, M.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Mosallaei, H.

Munk, B. A.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Pardo, F.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Pelouard, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

Perruisseau-Carrier, J.

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antenn. Propag.58(5), 1494–1502 (2010).
[CrossRef]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013).
[CrossRef]

Pu, M.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Roberts, A.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Shi, J. H.

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Sieber, P. E.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Tharp, J. S.

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, C.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Wang, Y.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Wang, Z.

Wang, Z. P.

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Werner, D. H.

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Yu, S. W.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Zhao, J.

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Zhao, Z.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, B.

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Zhu, Z.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Appl. Phys. Lett. (6)

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013).
[CrossRef]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013).
[CrossRef]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antenn. Propag.58(5), 1494–1502 (2010).
[CrossRef]

Nano Lett. (2)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014).
[CrossRef]

Phys. Rev. Lett. (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013).
[CrossRef]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Other (2)

I. Sohail, Y. Ranga, K. P. Esselle, and S. G. Hay, “A linear to circular polarization converter based on Jerusalem-Cross frequency selective surface,” 2013 7th European Conference on Antennas and Propagation (EuCAP), 2141–2143 (2013).

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The birefringent anisotropic metasurface. (a) The schematic and (b) photograph of the birefringent anisotropic metasurface.

Fig. 2
Fig. 2

The investigation of electromagnetic responses of the birefringent anisotropic metasurface. (a) v-polarized electric-field vector (E)v) can be decomposed to two orthogonal electric-field vectors of (E)s1 and (E)s2. (b) The unit cell is excited by (E)s1, only the I-shaped structure 1 has response. (c) The unit cell is excited by (E)s2, only the I-shaped structure 2 has response. (d) The S11-parameter magnitudes of the metasurface as a function of frequency and lengths of ls1 (ls2) under the excitation of (E)s1 (E)s2). (e) The S11-parameter phases of the metasurface as a function of frequency and lengths of ls1 (ls2) under the excitation of (E)s1 (E)s2). (f) The reflection phases of unit cell by changing the length of ls2 from 1mm to 5mm with ls1 = 3.6mm under the excitation of (E)s1. (g) The reflection phase differences of (E)s1 and (E)s2 for circular polarization (ls1 = 3.6mm and ls2 = 4.4mm) and linear polarization (ls1 = 1.7mm and ls2 = 4.5mm).

Fig. 3
Fig. 3

The simulated magnitudes and phase differences of Rvv and Rhv, in which Rvv and Rhv are the reflection coefficients of v-polarized and h-polarized reflection waves compared to the v-polarized incident waves. (a) The simulated magnitudes of Rhv and Rvv for both circular and linear polarizations. (b) The phase differences between the Rhv and Rvv for both circular and linear polarizations. (c) The simulated and measured magnitudes of Rhv and Rvv, and magnitude errors between the Rhv and Rvv for circular polarization. (d) The simulated and measured phase differences of Rhv and Rvv for circular polarization.

Fig. 4
Fig. 4

The experimental setup and magnitudes and phase differences of Rvv and Rhv. (a) The experimental setup, in which two X-band rectangular standard horns are used as emitter and receiver, respectively. (c) The simulated and measured magnitudes of Rhv and Rvv, and magnitude errors between the Rhv and Rvv for circular polarization. (d) The simulated and measured phase differences of Rhv and Rvv for circular polarization.

Fig. 5
Fig. 5

The theoretical model of multiple reflections and transmissions for the reflective metasurface and calculated results. (a) The sketch of multiple reflections and transmissions for the reflective metasurface. (b) The calculated and simulated reflection phases of (E)s1 with different ls1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| E r v | = R v v | E v | ,
| E r h | = R h v | E v | .
Arg ( E r v ) Arg ( E r h ) = Arg ( R r v ) Arg ( R r h ) .
E r = E 0 ( r 12 t 12 t 21 e i 2 k d + t 12 t 21 r 21 e i 4 k d t 12 t 21 r 21 2 e i 6 k d + ) ,
R = E r E 0 = r 12 + r 12 r 21 e i 2 k d t 12 t 21 e i 2 k d 1 + r 12 e i 2 k d .

Metrics