Abstract

Nanoimprint technology was used to synthesize a series of nanostructures with hexagonal holes on a n-GaN baseplate. The hydrothermal growth technique was then used to produce 1.5-μm n-type ZnO nanorods. Radio frequency reactive magnetron sputtering was employed to grow a 50-nm thick layer of cuprous oxide film over the nanorods to form a p-n Cu2O/ZnO core-shell structure. Based on the different imprint widths and intervals obtained, Cu2O/ZnO heterostructure samples A, B, C, and D showed aperture ratios of 0.0627, 0.0392, 0.0832, and 0.0537, respectively. Scanning electron microscopy and atomic force microscopy indicated that a 50-nm Cu2O film coated the ZnO nanorods, forming a core-shell structure. X-ray diffraction and x-ray rocking curve (XRC) analysis showed that the Cu2O lattice structure had polycrystalline characteristics. The lattice planes of Cu2O were (111) and (220), and Sample C exhibited the narrowest XRC half-height full-width value. Therefore, among the samples obtained, Sample C had the optimal material properties. Measurement of the optical properties of the samples demonstrated that their luminous peak did not change with variations in temperature. Sample C also showed optimal optical properties. High-resolution transmission electron microscopy indicated the presence of a midlayer in the Cu2O/ZnO junction that had a direct impact on the Cu2O lattice arrangement on the top, corner, and side faces of the ZnO nanorods. The sample with the largest aperture ratio exhibited the most favorable optical and material properties. The novel structure obtained can potentially be used in solar cell applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010).
    [CrossRef]
  2. S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
    [CrossRef]
  3. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001).
    [CrossRef]
  4. U. Ozgur, D. Hofstetter, and H. Morkoc, “ZnO devices and applications: a review of current status and future prospects,” IEEE Proc. 98, 1255–1268 (2010).
  5. T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).
  6. L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
    [CrossRef]
  7. L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
    [CrossRef]
  8. A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29(1), 7–17 (1986).
    [CrossRef]
  9. Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express21(9), 11448–11456 (2013).
    [CrossRef] [PubMed]
  10. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
    [CrossRef]
  11. M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
    [CrossRef] [PubMed]
  12. N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
    [CrossRef]
  13. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  14. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
    [CrossRef]
  15. F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010).
    [CrossRef]
  16. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).
  17. C. C. Chao, Y. Ohkura, T. Usui, and J. M. Weisse, “Methods for improving efficiencies of cuprous oxide solar cells,”( http://www.stanford.edu/~ccchao1/SolarCells/MATSCI302Cu2OSolar Cells.pdf )
  18. G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
    [CrossRef]
  19. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
    [CrossRef] [PubMed]
  20. F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
    [CrossRef]
  21. V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
    [CrossRef]
  22. V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
    [CrossRef]
  23. A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
    [CrossRef]
  24. S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
    [CrossRef]
  25. M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983).
    [CrossRef]
  26. A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).
  27. D. DeMeo, S. MacNaughton, S. Sonkusale, and T. E. Vandervelde, “Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells, Nanowires - Implementations and Applications, Dr. Abbass Hashim, ed. (InTech, 2011), Chapter 7.
  28. N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
    [CrossRef]
  29. P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).
  30. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express3(9), 1459–1467 (2013).
    [CrossRef]
  31. Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure study of the coalescence growth of GaN columns with molecular beam epitaxy,” Opt. Mater. Express3(9), 1450–1458 (2013).
    [CrossRef]
  32. S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).
  33. B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
    [CrossRef]
  34. L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
    [CrossRef]
  35. S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
    [CrossRef]
  36. S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
    [CrossRef]
  37. H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
    [CrossRef]
  38. H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
    [CrossRef]
  39. S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
    [CrossRef]
  40. H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, P. C. Chou, and S. Y. Ting, “Crystallinity improvement of ZnO thin film by hierarchical thermal annealing,” Opt. Mater. Express3(2), 295–306 (2013).
    [CrossRef]
  41. H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, L. H. Chen, and R. C. C. Tsiang, “Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy,” Opt. Mater. Express3(2), 237–247 (2013).
  42. P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011).
    [CrossRef]
  43. K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
    [CrossRef]
  44. H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).
  45. L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
    [CrossRef]
  46. P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
    [CrossRef]
  47. Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
    [CrossRef] [PubMed]
  48. Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
    [CrossRef]
  49. S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
    [CrossRef]
  50. Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
    [CrossRef]
  51. S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
    [CrossRef]
  52. O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
    [CrossRef]
  53. J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
    [CrossRef]

2013

S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
[CrossRef]

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express21(9), 11448–11456 (2013).
[CrossRef] [PubMed]

Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express3(9), 1459–1467 (2013).
[CrossRef]

Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure study of the coalescence growth of GaN columns with molecular beam epitaxy,” Opt. Mater. Express3(9), 1450–1458 (2013).
[CrossRef]

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).

N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
[CrossRef]

H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, P. C. Chou, and S. Y. Ting, “Crystallinity improvement of ZnO thin film by hierarchical thermal annealing,” Opt. Mater. Express3(2), 295–306 (2013).
[CrossRef]

H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, L. H. Chen, and R. C. C. Tsiang, “Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy,” Opt. Mater. Express3(2), 237–247 (2013).

K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
[CrossRef]

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

2012

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
[CrossRef]

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

2011

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011).
[CrossRef]

2010

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010).
[CrossRef]

J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010).
[CrossRef]

2009

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

2008

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

2007

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
[CrossRef]

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

2006

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

2005

T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).

O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
[CrossRef]

2004

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

2001

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001).
[CrossRef]

1992

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

1986

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29(1), 7–17 (1986).
[CrossRef]

1984

N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
[CrossRef]

1983

M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983).
[CrossRef]

Afzulpurkar, N.

N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
[CrossRef]

Ager, J. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Ahirrao, P. B.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Akimoto, K.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Akinaga, H.

S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
[CrossRef]

Akkari, F. C.

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010).
[CrossRef]

F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
[CrossRef]

Alves, E.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Arai, T.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Ashraf, M. W.

N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
[CrossRef]

Baek, S. K.

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).

Barquinha, P.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Baskoutas, S.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Batzill, M.

O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
[CrossRef]

Baumbach, T.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Berezin, A. A.

M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983).
[CrossRef]

Bilurkar, P. G.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Borgarello, E.

N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
[CrossRef]

Cai, J.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Cai, W. M.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Chai, X. Y.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Chakraborty, A. K.

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

Chang, W. M.

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Chatterjee, A. P.

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, L. H.

Chen, P. J.

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

Chen, Y. C.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Chen, Y. S.

Chen, Z. G.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Cheng, Y. C.

Chiam, S. Y.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Chim, W. K.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Cho, H. K.

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).

Chou, P. C.

Chou, S. M.

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

Chueh, Y. L.

Chung, K. B.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Cui, J.

J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010).
[CrossRef]

Dalchiele, E. A.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Diebold, U.

O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
[CrossRef]

Do, J. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Doyle, S.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Droulias, S. A.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Dulub, O.

O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
[CrossRef]

Elangovan, E.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Elhordoy, F.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Ergen, O.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Fan, Z.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Fang, G. J.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Fariza, B. M.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Feng, S. W.

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

Figueiredo, V.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Fortunato, E.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Franco, N.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Fujinaka, M.

M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983).
[CrossRef]

Fujiwara, N.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Galván-Arellano, M.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Garoufalis, C. S.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Gibson, U. J.

J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010).
[CrossRef]

Goncalves, G.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Gosavi, S. R.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Gratzel, M.

N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
[CrossRef]

Guerguerian, G.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Han, Y. B.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Hao, Y. F.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Ho, J. C.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Hon, M. H.

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

Hsieh, Y. P.

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

Hsu, M. C.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Hsu, T. C.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Hsu, Y. K.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, J. Q.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Huang, S.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Huang, W.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Ishizuka, S.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Iwasaki, Y.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Izaki, M.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Jarasiunas, K.

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

Javey, A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Juárez-Díaz, G.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Jung, T. H.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Kanetkar, S. M.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Kanzari, M.

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010).
[CrossRef]

F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
[CrossRef]

Kapaklis, V.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Kawasaki, M.

T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).

Khodyuk, I. V.

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011).
[CrossRef]

Kim, D. H.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Kobayashi, H.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Konishi, Y.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Kubo, S.

S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
[CrossRef]

Kuo, C. T.

Kwon, J. D.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Kwon, S. H.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Lahiri, S. K.

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

Lai, C. C.

Lee, K. R.

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).

Lee, Y.-H.

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

Leinen, D.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Lemmer, U.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Leu, I. C.

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

Leu, P. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Li, C.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Li, C. M.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Li, J.

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Li, S. C.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

Liao, C. H.

Liao, L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Lin, C. H.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Lin, Y.

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Lin, Y. G.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Liu, J. P.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Long, M.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Look, D. C.

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001).
[CrossRef]

Ma, L.

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Mahmood, K.

K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
[CrossRef]

Makino, T.

T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).

Malinauskas, T.

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

Marotti, R. E.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Mart’in, F.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Martínez-Juárez, J.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Martins, R.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Mate, N.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Matsubara, K.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Mittiga, A.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Moriwaki, A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Mukhopadhyay, A. K.

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

Nagase, K.

S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
[CrossRef]

Nakagawa, M.

S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
[CrossRef]

Nakamura, A.

Nakano, H.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Nam, K. S.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Neale, S.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Niki, S.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Noda, S.

S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
[CrossRef]

Ogale, S. B.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Okamoto, Y.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Pan, J. S.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Pappas, S. D.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Parikh, N.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Park, J. S.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

Park, S. B.

K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
[CrossRef]

Park, S. H. K.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

Patil, D. R.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Patil, R. S.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Patnaik, B.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

Peña-Sierra, R.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Pereira, L.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Pereyra, C. J.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Poulopoulos, P.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Powalla, M.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Qiu, M.

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Qiu, M. Q.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Rakhshani, A. E.

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29(1), 7–17 (1986).
[CrossRef]

Ramos-Barrad, J. R.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Razavi, H.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Reichertz, L. A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Rezig, B.

F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
[CrossRef]

Rodnyi, P. A.

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011).
[CrossRef]

Romero-Paredes, G.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Sakurai, T.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Salza, E.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Sarto, F.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Sasano, J.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Sayama, K.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Segawa, Y.

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).

Serpone, N.

N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
[CrossRef]

Sheikh, N.

N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
[CrossRef]

Shen, K. C.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Shen, Z. X.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Shi, H.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

Shiao, W. Y.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Shima, H.

S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
[CrossRef]

Shinagawa, T.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Shinde, M. S.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Slobodskyy, A.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Solache-Carranco, H.

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

Song, C. Q.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Su, X. R.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Sugihara, H.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Sung, H. J.

K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
[CrossRef]

Suzuki, K.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Takahashi, T.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Tang, T. Y.

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Temmyo, J.

Thong, J. T. L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Ting, S. Y.

H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, P. C. Chou, and S. Y. Ting, “Crystallinity improvement of ZnO thin film by hierarchical thermal annealing,” Opt. Mater. Express3(2), 295–306 (2013).
[CrossRef]

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

Tsiang, R. C. C.

Tucci, M.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Ulyanenkova, T.

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

Vasanthi, R.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Wang, E.

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Wang, H. C.

Wang, L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Wang, Q. Q.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Wang, S. J.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Wang, Y.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Watase, S.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

Wong, L. M.

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

Wu, M.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Wu, T.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Wu, Y. H.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Xing, G. Z.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Xiong, L.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Yan, B.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Yanagida, M.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

Yanagita, M.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Yang, C. C.

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Yang, X.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Yeh, J. H.

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

Yin, H. H.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Yu, C. H.

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Yu, K.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Yu, T.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Yu, Y.

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

Zamani, A.

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

Zang, Z.

Zhang, B. P.

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

Zhang, Q. F.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Zhang, Y. F.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Zhang, Z. L.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Zhao, B.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Zhao, B. C.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Zhou, B. X.

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

Zhu, Z. Q.

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

Appl. Phys. Lett.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009).
[CrossRef]

Appl. Surf. Sci.

J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013).
[CrossRef]

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008).
[CrossRef]

Arch Appl. Sci. Research.

P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).

Chem. Lett.

S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012).
[CrossRef]

Chin. Phys. B.

S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008).
[CrossRef]

Electrochim. Acta

L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011).
[CrossRef]

Eur. Phys. J. Appl. Phys.

F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007).
[CrossRef]

J. Appl. Phys.

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992).
[CrossRef]

M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983).
[CrossRef]

L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010).
[CrossRef]

T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).

Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).

J. Chem. Soc. Chem. Commun.

N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984).
[CrossRef]

J. Electrochem. Soc.

B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011).
[CrossRef]

S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008).
[CrossRef]

J. Mater. Chem. C.

K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013).
[CrossRef]

J. Nano. Mater.

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).

J. Nanomater.

N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013).
[CrossRef]

S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012).
[CrossRef]

J. Phys. Chem. B

M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007).
[CrossRef]

L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008).
[CrossRef]

J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010).
[CrossRef]

P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011).
[CrossRef]

J. Phys. Conf. Ser.

S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013).
[CrossRef]

J. Phys. D Appl. Phys.

G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012).
[CrossRef]

Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013).
[CrossRef]

J. Power Sources

Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013).
[CrossRef]

Jpn. J. Appl. Phys.

H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009).
[CrossRef]

Mater. Sci. Eng. B

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001).
[CrossRef]

Nano Lett.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Nanoscale

Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012).
[CrossRef] [PubMed]

Nat. Mater.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Opt. Spectrosc.

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011).
[CrossRef]

Phys. Status Solidi A.

V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009).
[CrossRef]

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010).
[CrossRef]

Phys. Status Solidi, C Conf. Crit. Rev.

S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004).
[CrossRef]

Solid-State Electron.

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29(1), 7–17 (1986).
[CrossRef]

Thin Solid Films

A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992).
[CrossRef]

H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010).
[CrossRef]

Top. Catal.

O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005).
[CrossRef]

Other

H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).

D. DeMeo, S. MacNaughton, S. Sonkusale, and T. E. Vandervelde, “Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells, Nanowires - Implementations and Applications, Dr. Abbass Hashim, ed. (InTech, 2011), Chapter 7.

U. Ozgur, D. Hofstetter, and H. Morkoc, “ZnO devices and applications: a review of current status and future prospects,” IEEE Proc. 98, 1255–1268 (2010).

C. C. Chao, Y. Ohkura, T. Usui, and J. M. Weisse, “Methods for improving efficiencies of cuprous oxide solar cells,”( http://www.stanford.edu/~ccchao1/SolarCells/MATSCI302Cu2OSolar Cells.pdf )

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the preparation of nanostructures and growth of the samples.

Fig. 2
Fig. 2

SEM images of ZnO nanorods of (a) sample A, (b) sample B, (c) sample C, (d) sample D.

Fig. 3
Fig. 3

SEM images of Cu2O/ZnO core-shell structures of (a) sample A, (b) sample B, (c) sample C, (d) sample D.

Fig. 4
Fig. 4

AFM images of Cu2O/ZnO core-shell structure of (a) sample A, (b) sample B, (c) sample C, (d) sample D.

Fig. 5
Fig. 5

(a) High-resolution XRD ω-2θ scanning results of Cu2O/ZnO core-shell structure sample C. (b) Omage-2θ measurement results of samples A, B, C, and D. (c) Magnification of XRD ω-2θ results of samples A, B, C, and D at 36°–37°. (d) Magnification of XRD ω-2θ results of samples A, B, C, and D at 62°– 64°.

Fig. 6
Fig. 6

(a) Normalized XRC results of samples A, B, C, and D in the Cu2O (111) plane. (b) Normalized XRC results of samples A, B, C, and D in the Cu2O (220) plane.

Fig. 7
Fig. 7

(a) Diagram of hexagonally arranged period holes in the nanoimprinting technique. In the figure, three holes are from magnification chart of top right inset. The top left inset shows the AR calculation method, i.e., the sum of the areas of A, B, and C divided by the area of the blue triangle. (b) Diagram of a unit cell with three different AR values. In the unit cell, red parts refer to nanoimprinted holes. In addition, ZnO nanorods begin to grow from inside the holes. White parts refer to the SiNx mask layer.

Fig. 8
Fig. 8

PL spectra as a function of temperature of (a) sample A, (b) sample B, (c) sample C, (d) sample D.

Fig. 9
Fig. 9

Integrated PL intensity ratio of the samples as functions of temperature.

Fig. 10
Fig. 10

Schematic energy band diagram of Cu2O/ZnO core-shell samples.

Fig. 11
Fig. 11

HRTEM images of Sample C. (a) Cross-section image; (b) Drawing of partial enlargement in figure (a); (c) Drawing of partial enlargement of (c) in figure (b); (d) Drawing of partial enlargement of (d) in figure (b); (e) Drawing of partial enlargement of (e) in figure (b); Drawing of partial enlargement of (f) in figure (b).

Fig. 12
Fig. 12

Atomic structure of Cu2O and ZnO. (a) The ZnO (0001), (1–100), and (10–11), (b) Cu2O (111) and (220) planes form a preferred interface.

Fig. 13
Fig. 13

(a) Plane-view TEM image of one nanorod form Sample C. (b) Drawing of partial enlargement of (b) in figure (a). (c) Drawing of partial enlargement of (c) in figure (a). (d) Drawing of partial enlargement of (d) in figure (a).

Tables (1)

Tables Icon

Table 1 Hole size and pitch of Samples A, B, C, and D under nanoimprint processes, and the width, height, and AR of the ZnO nanorod samples A, B, C, and D in hydrothermal growth.

Metrics