Abstract

A simple bilayered chiral metamaterial is constructed by using an array of two twisted split ring resonators (SRRs). Theoretical analysis and simulated results show that chiral metamaterial can achieve strong optical activity of linearly polarized electromagnetic (EM) waves. The arbitrary polarization rotation angle can be readily realized by properly designing the twisted angle. Changing the length of the horizontal bar can tune the spectral response of the SRRs. The induced current densities and magnetic field distributions provide a good explanation to optical activity in the bilayered SRR metamaterial.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
    [CrossRef]
  2. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
    [CrossRef] [PubMed]
  3. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
    [CrossRef]
  4. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
    [CrossRef] [PubMed]
  5. R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
    [CrossRef]
  6. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
    [CrossRef] [PubMed]
  7. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
    [CrossRef]
  8. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  9. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
    [CrossRef] [PubMed]
  10. S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett.34(13), 1988–1990 (2009).
    [CrossRef] [PubMed]
  11. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
    [CrossRef]
  12. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
    [CrossRef] [PubMed]
  13. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
    [CrossRef]
  14. E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
    [CrossRef] [PubMed]
  15. R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
    [CrossRef] [PubMed]
  16. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  17. M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
    [CrossRef] [PubMed]
  18. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012).
    [CrossRef]
  19. R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
    [CrossRef] [PubMed]
  20. R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
    [CrossRef]
  21. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
    [CrossRef]
  22. M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
    [CrossRef]
  23. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
    [CrossRef]
  24. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  25. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  26. H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
    [CrossRef] [PubMed]
  27. H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
    [CrossRef]
  28. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
    [CrossRef]
  29. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
    [CrossRef]
  30. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  31. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
    [CrossRef]
  32. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
    [CrossRef]
  33. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef] [PubMed]
  34. C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
    [CrossRef]
  35. J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
    [CrossRef]
  36. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011).
    [CrossRef] [PubMed]
  37. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
    [CrossRef]
  38. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
    [CrossRef] [PubMed]
  39. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
    [CrossRef]
  40. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
    [CrossRef] [PubMed]
  41. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
    [CrossRef]
  42. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
    [CrossRef]

2013 (5)

Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[CrossRef]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

2012 (10)

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

2010 (6)

R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

2009 (8)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett.34(13), 1988–1990 (2009).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

2008 (3)

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
[CrossRef]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

2007 (2)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

2006 (2)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Azad, A. K.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Cai, T.

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

Cao, Y.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Chen, J.

Chen, Y.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Cui, H. X.

Cui, T. J.

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Decker, M.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Economou, E. N.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012).
[CrossRef]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Fan, Y. C.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Feng, Y. J.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Galynsky, V. M.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Han, J.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

He, S. L.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Huang, C.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Jiang, T.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Jiang, W. X.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Kafesaki, M.

Kang, M.

Katsarakis, N.

Kenanakis, G.

Klein, M. W.

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Konstantinidis, G.

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Koschny, Th.

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Kriegler, C. E.

Kwon, D. H.

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Li, F.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Li, H. Q.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Li, Y.

Li, Z.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Li, Z. F.

Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[CrossRef]

Linden, S.

Liu, X. C.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Liu, X.-X.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Lv, T. T.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Ma, H. F.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Mutlu, M.

Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Novitsky, A. V.

Ozbay, E.

Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Plum, E.

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Qi, M. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

Ren, M. X.

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Shi, J. H.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Soukoulis, C. M.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Stavrinidis, A.

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tsai, D. P.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, G. M.

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

Wang, H. T.

Wang, Z. B.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Wang, Z. S.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Wegener, M.

Wei, Z. Y.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Werner, D. H.

Werner, P. L.

Wu, C.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Xu, H. X.

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013).
[CrossRef] [PubMed]

Xu, J. J.

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Ye, Y. Q.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Yu, S. W.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

Yu, X.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

Zhang, W. L.

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhao, J. M.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Zhao, R.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

Zhu, Z.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Zhukovsky, S. V.

Adv. Mater. (1)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (10)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008).
[CrossRef]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

J. Appl. Phys. (1)

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. Opt. (2)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[CrossRef]

Nat. Commun. (3)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Phys. Rev. B (6)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009).
[CrossRef]

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010).
[CrossRef]

Phys. Rev. Lett. (7)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Prog. Electromagnetics Res. (1)

H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the meta-molecule for the proposed chiral metamaterial. (a) Schematic of the unit cell in anisotropic chiral metamaterial. The back layer is rotated by –θ with respect to the front one. (b) Rotated unit cell around the z-axis by θ/2. (c) The whole metamaterial. The unit in dimensions is nanometer.

Fig. 2
Fig. 2

The simulated transmission (a), polarization azimuth angle ψ (b) and ellipticity χ (c) in the SRRs metamaterial for the transmitted wave. The solid line indicates the resonant mode.

Fig. 3
Fig. 3

Calculated resonance frequencies (a), transmission (b), polarization azimuth angle ψ (c) and ellipticity χ (d) at the resonant frequencies for different twisted angle θ.

Fig. 4
Fig. 4

The scattered H field distributions on the middle plane between the two metal plates and the current modes around two SRRs’ surfaces when driven by the incident E ðeld at the resonant frequencies when θ = 30° (a), 50° (b) and 70° (c).

Fig. 5
Fig. 5

The simulated results of the twisted double bars and single bars metamaterials when the twisted angle is −30°. (a) Simulations of the twisted double bars metamaterial. The dashed lines indicate the resonant mode corresponding to the twisted double bars with l1 = 540nm and 500nm. The solid line indicates the resonant mode in the twisted SRRs in Fig. 2. (b) Simulations of the twisted single bars metamaterial. The dashed line indicates the resonant mode.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( t x t y )=( T xx T xy T yx T yy )( i x i y )=( A B C D )( i x i y )= T lin f ( i x i y )
T lin b =( T xx T yx T xy T yy )
T cir f =( T ++ T + T + T )=( a b c d )= 1 2 ( A+D+i(BC) ADi(B+C) AD+i(B+C) A+Di(BC) )
ψ x b = 1 2 [ argaargd ]
T 1 f = ( A B B D )
T f = D θ / 2 1 T 1 f D θ / 2 = ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) 1 ( A B B D ) ( cos ( θ / 2 ) sin ( θ / 2 ) sin ( θ / 2 ) cos ( θ / 2 ) ) = ( A cos 2 ( θ / 2 ) + D sin 2 ( θ / 2 ) ( A D ) sin ( θ / 2 ) cos ( θ / 2 ) + B ( A D ) sin ( θ / 2 ) cos ( θ / 2 ) B A sin 2 ( θ / 2 ) + D cos 2 ( θ / 2 ) )
T cir f = 1 2 ( A + D + 2 i B ( A D ) cos θ i ( A D ) sin θ ( A D ) cos θ + i ( A D ) sin θ A + D 2 i B )
ψ= 1 2 tan 1 [ 2| t yx |cosϕ | t xx |(1 | t yx | 2 / | t xx | 2 ) ], χ= 1 2 sin 1 [ 2| t yx |sinϕ | t xx |(1 | t yx | 2 / | t xx | 2 ) ]

Metrics