Abstract

In this study, glass-compositional dependence of Tm3+ blue up-conversion photoluminescence (UCPL), which is known to be obtained via three-steps’ energy transfers from Yb3+ to Tm3+ ions under near-infrared light excitation at ~980 nm, is investigated for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses. The third step of energy transfer from Yb3+ to Tm3+ ions is particularly important ((Yb3+, Tm3+); (2F5/2, 3H4)→(2F7/2, 1G4)) since it determines the final blue UCPL intensity from 1G4 level compared to red and near-infrared UCPLs, and so then estimated with varied TlO0.5 and ZnO contents at the expense of TeO2 in the fixed Tm3+ and Yb3+ contents ([Yb3+]/[Tm3+] = 5). The substantial energy transfer rate (ETR) in the third step is evaluated from excitation power dependence of the blue UCPL intensity in comparison with near-infrared UCPL of Tm3+ ions with an aid of analytical method of PL lifetime and Judd-Ofelt theory. It is here revealed that the highest ETR is achieved to be 3.54 × 10−17 cm3/s for the glass composition of 70TeO2-10TlO0.5-19.4ZnO-0.1Tm2O3-0.5Yb2O3, and that the transfer rate is possibly related with the length of TeO2 glass network because a long tellurite glass network can cause segregation of rare-earth elements inducing effective Yb3+-Yb3+ energy migration and less quenching centers like dangling bonds of isolated TeO32-, resulted in the enhancement of the energy transfer for blue UCPL.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
    [CrossRef]
  2. J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
    [CrossRef]
  3. M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
    [CrossRef]
  4. N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).
  5. D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
    [CrossRef]
  6. W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
    [CrossRef]
  7. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
    [CrossRef] [PubMed]
  8. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
    [CrossRef]
  9. X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
    [CrossRef] [PubMed]
  10. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
    [CrossRef] [PubMed]
  11. J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
    [CrossRef]
  12. V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
    [CrossRef]
  13. E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
    [CrossRef]
  14. H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
    [CrossRef] [PubMed]
  15. D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
    [CrossRef]
  16. V. P. Tuyen, T. Hayakawa, M. Nogami, J. -R. Duclère, and P. Thomas, “Photoluminescence properties and Judd-Ofelt analysis of Eu3+ ions in zinc-thallium-tellurite glasses,” J. Non-Crystal Solids, to be submitted (2014).
  17. M. Uchida, T. Hayakawa, T. Suhara, J. -R. Duclère, and P. Thomas, “Dependence of rare-earth concentration on blue up-conversion photoluminescence properties for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses,” J. Appl. Glass Sci. (to be submitted) (2013).
  18. M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
    [CrossRef]
  19. J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
    [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  22. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron.7(4), 153–159 (1971).
    [CrossRef]
  23. W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron.10(4), 450–457 (1974).
    [CrossRef]
  24. W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965).
    [CrossRef]
  25. N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
    [CrossRef]
  26. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
    [CrossRef]
  27. G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
    [CrossRef]
  28. W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
    [CrossRef]
  29. O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
    [CrossRef] [PubMed]
  30. C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002).
    [CrossRef] [PubMed]
  31. Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
    [CrossRef]
  32. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, and D. Munoz-Martin, “Spectroscopic properties of the 1.4 µm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express16(16), 11836–11846 (2008).
    [CrossRef]
  33. O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
    [CrossRef]

2013 (7)

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

2012 (3)

H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
[CrossRef] [PubMed]

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

2011 (1)

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

2010 (4)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

2008 (3)

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, and D. Munoz-Martin, “Spectroscopic properties of the 1.4 µm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express16(16), 11836–11846 (2008).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

2004 (2)

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

2002 (1)

C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

1997 (1)

Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
[CrossRef]

1977 (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
[CrossRef]

1975 (1)

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

1974 (1)

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron.10(4), 450–457 (1974).
[CrossRef]

1971 (1)

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron.7(4), 153–159 (1971).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

1965 (1)

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Arriandiaga, M. A.

Astrath, N. G. C.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Babu, R.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Baesso, M. L.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Balda, R.

Barney, E. R.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Bart, J. C. J.

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Batentschuk, M.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Beeby, A.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Blackburn, O. A.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Boehm, L.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
[CrossRef]

Bossi, A.

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Brabec, C. J.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Brik, M. G.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Bushby, L. M.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Cantelar, W.

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

Cardinal, T.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Castellan, A.

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Ch, N.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Champarnaud-Mesjard, J.-C.

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

Chang, J.

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Chen, C.

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Chen, Y.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Couderc, V.

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

Cussó, F.

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

Dai, Y.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

de Araujo, M. T.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Di, W.

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Dong, H.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Duclère, J.-R.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Dutreilh-Colas, M.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

Faulkner, S.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Feller, S.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Fernández, J.

Fernández-Navarro, J. M.

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Gai, S.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Giordano, N.

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Gong, X.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Gouveia, E. A.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Gruber, J. B.

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965).
[CrossRef]

Güdel, H. U.

C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002).
[CrossRef] [PubMed]

Guo, W.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Guo, X.

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Halenius, U.

Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
[CrossRef]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Hannon, A. C.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Hayakawa, T.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Holland, D.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Huang, Y.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Jacinto, C.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Jia, G. H.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kabadou, A.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

Kityk, I. V.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Krupke, W. F.

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron.10(4), 450–457 (1974).
[CrossRef]

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron.7(4), 153–159 (1971).
[CrossRef]

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965).
[CrossRef]

Lacha, L. M.

Li, C.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Li, D.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Li, J. F.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Liao, J.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lin, J.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Lin, Y.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Linda, D.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

Liu, L.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Liu, X.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Luo, Z.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Merle-Méjean, T.

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

Mirgorodsky, A.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

Mirgorodsky, A. P.

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

Mohamed-Kamari, H.

H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
[CrossRef] [PubMed]

Moncorge, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Munoz-Martin, D.

Naga Raju, G.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Natrajan, L. S.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Ning, Y.

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Niu, N.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Niu, W.

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Nogami, M.

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Noguera, O.

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

Núñez, N. O.

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

Nygren, M.

Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
[CrossRef]

Ocaña, M.

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Oo, H. M.

H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
[CrossRef] [PubMed]

Orman, R. G.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Osvet, A.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Parker, D.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Perissinoto, P.

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Pinna, L.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Qin, W.

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Qiu, J.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Quintanilla, M.

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Rego-Filho, F. G.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Reinhard, C.

C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002).
[CrossRef] [PubMed]

Reisfeld, R.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
[CrossRef]

Shen, Z.

Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
[CrossRef]

Shi, G.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Silva, W. F.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Song, W.

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Song, Y.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Song, Z.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Sørensen, T. J.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Soulis, M.

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

Spector, N.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
[CrossRef]

Srinivasa Rao, C.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Tatsumisago, M.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Thom, J.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Thomas, P.

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Tkachuk, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Tropiano, M.

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

Tu, C. Y.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Tuyen, V. P.

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Udo, P. T.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Umesaki, N.

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

Veeraiah, N.

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Vermelho, M. V. D.

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, H.-Q.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, W.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Wang, Y.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Wan-Yusoff, W. M.

H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
[CrossRef] [PubMed]

Wu, B. C.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Wu, H.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Wu, S.

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Yan, D.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Yang, P.

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

Yang, Y.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Yang, Z.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Yin, Z.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

You, Y.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Zhang, S.

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Zhang, X.

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

Zhou, D.

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

Zhu, Z. J.

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

Adv. Funct. Mater. (2)

S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010).
[CrossRef]

J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013).
[CrossRef]

Adv. Mater. (1)

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).

Chem. Phys. Lett. (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron.7(4), 153–159 (1971).
[CrossRef]

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron.10(4), 450–457 (1974).
[CrossRef]

Inorg. Chem. (1)

C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002).
[CrossRef] [PubMed]

Int. J. Mol. Sci. (1)

H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012).
[CrossRef] [PubMed]

J. Alloy. Comp. (1)

D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013).
[CrossRef]

J. Appl. Phys. (4)

M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013).
[CrossRef]

D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012).
[CrossRef]

G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

J. Lumin. (1)

W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008).
[CrossRef]

J. Mater. Chem. C (1)

J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013).
[CrossRef]

J. Mater. Sci. Lett. (1)

Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997).
[CrossRef]

J. Phys. Chem. Lett. (1)

E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013).
[CrossRef]

J. Phys. Chem. Solids (1)

O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004).
[CrossRef]

J. Solid State Chem. (1)

V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

J. Them. Analys. (1)

J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975).
[CrossRef]

Mater. Res. Bull. (1)

M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010).
[CrossRef]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (2)

O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012).
[CrossRef] [PubMed]

X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013).
[CrossRef] [PubMed]

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965).
[CrossRef]

Phys. Rev. B (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000).
[CrossRef]

Other (2)

V. P. Tuyen, T. Hayakawa, M. Nogami, J. -R. Duclère, and P. Thomas, “Photoluminescence properties and Judd-Ofelt analysis of Eu3+ ions in zinc-thallium-tellurite glasses,” J. Non-Crystal Solids, to be submitted (2014).

M. Uchida, T. Hayakawa, T. Suhara, J. -R. Duclère, and P. Thomas, “Dependence of rare-earth concentration on blue up-conversion photoluminescence properties for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses,” J. Appl. Glass Sci. (to be submitted) (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy level diagrams, energy transfer and UCPL mechanism of Tm3+/Yb3+ system under excitation at 975 nm.

Fig. 2
Fig. 2

Optical absorption spectra of 60TeO2-30TlO0.5-9.4ZnO-0.1Tm2O3-0.5Yb2O3 glass (6-3-1). The insertion shows a semi-logarithmic plot of the optical absorption spectrum. The optical absorption edge is seen to be ~420 nm.

Fig. 3
Fig. 3

UCPL spectra with different excitation power densities of 60TeO2-30TlO0.5-9.4ZnO-0.1Tm2O3-0.5Yb2O3 glass (6-3-1). λex = 975 nm. Each spectrum was offset for eyes guide. Inset shows up-conversion emission intensity ratio (r = I480/I800) of same sample as a function of the excitation power density.

Fig. 4
Fig. 4

1G43H6 photoluminescence decay curves of (90-x-y)TeO2-xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses (λex = 462 nm, λem = 480 nm). Each curve was offseted for eyes guide. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Fig. 5
Fig. 5

Raman spectra of (90-x-y)TeO2-xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Fig. 6
Fig. 6

Raman spectrum (blue line), deconvoluted Gaussian curves (red lines), and reconstructed with Gaussian curves (dotted red line) for 60TeO2-30TlO0.5-9.4ZnO-0.1Tm2O3-0.5Yb2O3 glass (6-3-1).

Fig. 7
Fig. 7

Ratios of glass unit structures estimated from Raman spectra and substantial energy transfer rates (ETR) <γd5> of (90-x-y)TeO2-xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Tables (4)

Tables Icon

Table 1 Glass compositions of the prepared glasses: (90-x-y)TeO2-xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses (mol%); 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Tables Icon

Table 2 Refractive indices, experimental and theoretical oscillator strengths, Judd-Ofelt parameters (Ω2, 4, 6, and δRMS (with rms error defined by Eqs. (7)-(9)) of (90-x-y)TeO2- xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Tables Icon

Table 3 Saturated intensity ratio, a, transition probabilities Ai0 and the ratio of products for transition probabilities Ai0 and transition energy i0 Lifetime τ5, substantial energy transfer rate (ETR) <γd5> for 1G4 level of Tm3+ ions of (90-x-y)TeO2-xTlO0.5-(9.4 + y)ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10).

Tables Icon

Table 4 Ratio of glass structure units (Te-O-Te, TeO4, TeO3+1, TeO3, TeO32-(isolated structures) divided by of [TeO4], [TeO3+1], and [TeO3] (expressed as [TeOn])) for (90-x-y)TeO2-xTlO0.5-(9.4 + y) ZnO-0.1Tm2O3-0.5Yb2O3 (x = 10, 20, 30, y = 0, 10) glasses. 6-3-1 (x = 30, y = 0), 7-2-1 (x = 20, y = 0), 5-3-2 (x = 30, y = 10), 6-2-2 (x = 20, y = 10), 7-1-2 (x = 10, y = 10). (n.d. = not detected)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f exp =4.318× 10 9 ε( ν )dν
f ed = 8 π 2 mcν 3h( 2J+1 ) ( n 2 +2 ) 2 9n S ed ,
f md = 8 π 2 mcν 3h( 2J+1 ) S md ,
S ed = λ=2,4,6 Ω λ | aJ U λ b J | 2 ,
S md = h 2 16 π 2 m 2 c 2 | aJ L+2S b J | 2 ,
A= 64 π 4 e 2 ν 3 3h( 2J+1 ) [ n ( n 2 +2 ) 2 9 S ed + n 3 S md ].
δ RMS = i=1 N ( f exp f theory ) 2 / ( N3 ) ,
rmserror= δ RMS / f RMS ×100%,
f RMS = i=1 N f exp 2 /N .
r = I 480 I 800 = a I e x c / I S 1 + I e x c / I S ,
a= N d γ d5 τ 5 ( ν 50 A 50 / ν 30 A 30 ),
γ d5 =( N d N Yb ) γ d5 = η Yb γ d5 ,

Metrics