Abstract

Dielectric spectra of two pristine blue-phase liquid crystals and a polymer-stabilized counterpart were acquired at various temperatures in conjunction with simultaneous observations of their optical transmission spectra and birefringent textures. The temperature-dependent dielectric data at 5.5 kHz were specifically retrieved for further examination of the feasibility of the dielectric technique as a means to identify phase transitions. With complementary identification by optical images at specific temperatures, it is suggested that investigations of the second derivative of the real-part permittivity with respect to the temperature can be considered as one of the applicable ways to depict the phase sequence of the blue-phase liquid crystals on the cooling process from the isotropic phase through the chiral nematic phase.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Random lasing in blue phase liquid crystals

Chun-Wei Chen, Hung-Chang Jau, Chun-Ta Wang, Chun-Hong Lee, I. C. Khoo, and Tsung-Hsien Lin
Opt. Express 20(21) 23978-23984 (2012)

Temperature dependence of refractive index in blue phase liquid crystals

Chun-Wei Chen, Hung-Chang Jau, Chun-Hong Lee, Cheng-Chang Li, Chien-Tsung Hou, Chih-Wei Wu, Tsung-Hsien Lin, and I. C. Khoo
Opt. Mater. Express 3(5) 527-532 (2013)

Label-free protein sensing by employing blue phase liquid crystal

Mon-Juan Lee, Chung-Huan Chang, and Wei Lee
Biomed. Opt. Express 8(3) 1712-1720 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
    [Crossref] [PubMed]
  2. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
    [Crossref] [PubMed]
  3. Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
    [Crossref]
  4. W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
    [Crossref]
  5. D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys.61(2), 385–432 (1989).
    [Crossref]
  6. P. P. Crooker, “Blue Phases,” in Chirality in Liquid Crystals, H. S. Kitzerow and C. Bahr, eds. (Springer, 2001).
  7. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding128, 99–117 (2008).
    [Crossref]
  8. K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).
  9. K. Bergmann and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. IV. Temperature and angular dependence of selective reflection,” Z. Naturforsch. C34A, 1031–1033 (1979).
  10. D. Armitage and F. P. Price, “Calorimetry of liquid crystal phase transitions,” J. Phys. (Paris)36, C1–C133 (1975).
  11. J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A37(5), 1754–1759 (1988).
    [Crossref] [PubMed]
  12. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin, and I.-C. Khoo, “Temperature dependence of refractive index in blue phase liquid crystals,” Opt. Mater. Express3(5), 527–532 (2013).
    [Crossref]
  13. P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett.102(16), 162904 (2013).
    [Crossref]
  14. P. Perkowski, “Dielectric spectroscopy of liquid crystal. Theoretical model of ITO electrodes influence on dielectric measurements,” Opto-Electron. Rev.17(2), 180–186 (2009).
    [Crossref]
  15. D. Armitage and R. J. Cox, “Liquid-crystal blue phase to isotropic transition and electric-field response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)64(2), 41–50 (1980).
    [Crossref]
  16. P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
    [Crossref] [PubMed]
  17. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
    [Crossref]
  18. W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst.31(11), 1539–1546 (2004).
    [Crossref]

2014 (1)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
[Crossref]

2013 (2)

C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin, and I.-C. Khoo, “Temperature dependence of refractive index in blue phase liquid crystals,” Opt. Mater. Express3(5), 527–532 (2013).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett.102(16), 162904 (2013).
[Crossref]

2010 (1)

Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
[Crossref]

2009 (2)

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

P. Perkowski, “Dielectric spectroscopy of liquid crystal. Theoretical model of ITO electrodes influence on dielectric measurements,” Opto-Electron. Rev.17(2), 180–186 (2009).
[Crossref]

2008 (1)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding128, 99–117 (2008).
[Crossref]

2005 (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[Crossref] [PubMed]

2004 (1)

W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst.31(11), 1539–1546 (2004).
[Crossref]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

2000 (1)

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

1989 (1)

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys.61(2), 385–432 (1989).
[Crossref]

1988 (1)

J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A37(5), 1754–1759 (1988).
[Crossref] [PubMed]

1980 (1)

D. Armitage and R. J. Cox, “Liquid-crystal blue phase to isotropic transition and electric-field response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)64(2), 41–50 (1980).
[Crossref]

1979 (2)

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

K. Bergmann and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. IV. Temperature and angular dependence of selective reflection,” Z. Naturforsch. C34A, 1031–1033 (1979).

1975 (1)

D. Armitage and F. P. Price, “Calorimetry of liquid crystal phase transitions,” J. Phys. (Paris)36, C1–C133 (1975).

Armitage, D.

D. Armitage and R. J. Cox, “Liquid-crystal blue phase to isotropic transition and electric-field response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)64(2), 41–50 (1980).
[Crossref]

D. Armitage and F. P. Price, “Calorimetry of liquid crystal phase transitions,” J. Phys. (Paris)36, C1–C133 (1975).

Bergmann, K.

K. Bergmann and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. IV. Temperature and angular dependence of selective reflection,” Z. Naturforsch. C34A, 1031–1033 (1979).

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

Cao, H.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Chen, C.-W.

Chen, W.-R.

W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst.31(11), 1539–1546 (2004).
[Crossref]

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Cox, R. J.

D. Armitage and R. J. Cox, “Liquid-crystal blue phase to isotropic transition and electric-field response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)64(2), 41–50 (1980).
[Crossref]

Guo, J.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

He, W.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Hou, C.-T.

Huang, P.

Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
[Crossref]

Huang, W.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Hwang, J.-C.

W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst.31(11), 1539–1546 (2004).
[Crossref]

Jamée, P.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Jau, H.-C.

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Khoo, I.-C.

Kikuchi, H.

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding128, 99–117 (2008).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Lee, C.-H.

Lee, W.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett.102(16), 162904 (2013).
[Crossref]

Li, C.-C.

Li, M.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Lin, T.-H.

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
[Crossref]

Mermin, N. D.

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys.61(2), 385–432 (1989).
[Crossref]

Nguyen, H.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Niu, G.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Pan, G.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Perkowski, P.

P. Perkowski, “Dielectric spectroscopy of liquid crystal. Theoretical model of ITO electrodes influence on dielectric measurements,” Opto-Electron. Rev.17(2), 180–186 (2009).
[Crossref]

Pitsi, G.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Pollman, P.

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

Price, F. P.

D. Armitage and F. P. Price, “Calorimetry of liquid crystal phase transitions,” J. Phys. (Paris)36, C1–C133 (1975).

Scherer, G.

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

Shen, D.

Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
[Crossref]

Sigaud, G.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Stegemeyer, H.

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

K. Bergmann and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. IV. Temperature and angular dependence of selective reflection,” Z. Naturforsch. C34A, 1031–1033 (1979).

Thoen, J.

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A37(5), 1754–1759 (1988).
[Crossref] [PubMed]

Wright, D. C.

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys.61(2), 385–432 (1989).
[Crossref]

Wu, C.-W.

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett.102(16), 162904 (2013).
[Crossref]

Yang, H.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Yang, Z.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Yuan, X.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Zhao, D.

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Zheng, Z.

Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
[Crossref]

Adv. Mater. (1)

W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, and H. Yang, “Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative,” Adv. Mater.21(20), 2050–2053 (2009).
[Crossref]

Appl. Phys. Lett. (1)

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett.102(16), 162904 (2013).
[Crossref]

J. Phys. (Paris) (1)

D. Armitage and F. P. Price, “Calorimetry of liquid crystal phase transitions,” J. Phys. (Paris)36, C1–C133 (1975).

Liq. Cryst. (1)

W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst.31(11), 1539–1546 (2004).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)596(1), 37–44 (2014).
[Crossref]

D. Armitage and R. J. Cox, “Liquid-crystal blue phase to isotropic transition and electric-field response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)64(2), 41–50 (1980).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[Crossref] [PubMed]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

Z. Zheng, D. Shen, and P. Huang, “Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,” New J. Phys.12(11), 113018 (2010).
[Crossref]

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

P. Perkowski, “Dielectric spectroscopy of liquid crystal. Theoretical model of ITO electrodes influence on dielectric measurements,” Opto-Electron. Rev.17(2), 180–186 (2009).
[Crossref]

Phys. Rev. A (1)

J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A37(5), 1754–1759 (1988).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

P. Jamée, G. Pitsi, M. Li, H. Nguyen, G. Sigaud, and J. Thoen, “Phase behavior and blue-phase-III-isotropic critical point in (R)-(S) mixtures of a chiral liquid crystal with a direct twist-grain-boundary to blue-phase transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(3), 3687–3693 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys.61(2), 385–432 (1989).
[Crossref]

Struct. Bonding (1)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding128, 99–117 (2008).
[Crossref]

Z. Natugorsch. (1)

K. Bergmann, P. Pollman, G. Scherer, and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. II. Selective reflection and optical rotatory dispersion,” Z. Natugorsch.34A, 253–254 (1979).

Z. Naturforsch. C (1)

K. Bergmann and H. Stegemeyer, “Evidence for polymorphism within the so-called “blue-phase” of cholesteric esters. IV. Temperature and angular dependence of selective reflection,” Z. Naturforsch. C34A, 1031–1033 (1979).

Other (1)

P. P. Crooker, “Blue Phases,” in Chirality in Liquid Crystals, H. S. Kitzerow and C. Bahr, eds. (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Dielectric spectra of sample A at 87.5 °C. ��’ and ��” are the real and imaginary parts of the complex dielectric function.
Fig. 2
Fig. 2 (a) Temperature-dependent real-part dielectric permittivity, and (b) the first- and (c) second derivative of the real-part dielectric constant of sample A at 5.5 kHz on the cooling process with a rate of 0.1 °C/min.
Fig. 3
Fig. 3 Transmission spectra and POM images of the BPLC sample A in (a) the isotropic phase (92.5 °C), (b) BP II (89.7 °C), (c) BP I (87.8 °C), (d) the mixed BP and cholesteric phases (85.8 °C), and (e) the cholesteric phase (83.0 °C).
Fig. 4
Fig. 4 Temperature-dependent dielectric permittivity and its second derivative with respect to temperature of the PS-BPLC (sample B) at f = 5.5 kHz.
Fig. 5
Fig. 5 (a) Temperature dependence of the real-part dielectric permittivity ε′(T) and the second derivative of ε′ with respect to T at 5.5 kHz and (b) POM images at some given temperatures in various phase regions of the pristine BPLC (sample C) on the cooling process with a rate of 0.1 °C/min.

Metrics