Abstract

In this contribution we present some results of a study of a refractive index inhomogeneity near the boundary of polydimethylsiloxane (PDMS) samples. We have observed inhomogeneities of the refractive index at PDMS–glass, PDMS–brass, PDMS–Teflon, PDMS–polystyrene and PDMS–PDMS boundaries. The greatest changes of the refractive index were observed at the PDMS–PDMS boundary where an increase of the refractive index in a narrow region close to the boundary was observed. It gives the possibility for guiding light. The existence of such a waveguide was proved by the fact that the boundary also guided light when samples containing PDMS–PDMS boundaries had been bent.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer

Carl A. Friehe, J. C. La Rue, F. H. Champagne, C. H. Gibson, and G. F. Dreyer
J. Opt. Soc. Am. 65(12) 1502-1511 (1975)

Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case

De-Long Zhang, Qun Zhang, Cong-Xian Qiu, Wing-Han Wong, and Edwin Yue-Bun Pun
Opt. Mater. Express 4(10) 2215-2220 (2014)

Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles

Arfat Pradana, Christian Kluge, and Martina Gerken
Opt. Mater. Express 4(2) 329-337 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Andriot, J. V. DeGroot, R. Meeks, E. Gerlach, M. Jungk, A. T. Wolf, S. Cray, T. Easton, A. Mountney, S. Leadley, S. H. Chao, A. Colas, F. de Buyl, A. Dupont, J. L. Garaud, F. Gubbels, J. P. Lecomte, B. Lenoble, S. Stassen, C. Stevens, X. Thomas, and G. Shearer, “Silicones in industrial applications,” http://www.dowcorning.com/content/publishedlit/Silicones_in_Industrial_Applications_Internet_version_080325.pdf .
  2. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).
  3. X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
    [Crossref]
  4. R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
    [Crossref]
  5. C. S. Huang, E. Y. B. Pun, and E. W. C. Wang, “Fabrication of an elastomeric rib waveguide Bragg grating filter,” J. Opt. Soc. Am. B 26(6), 1256–1262 (2009).
    [Crossref]
  6. A. J. Chung and D. Erickson, “Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express 19(9), 8602–8609 (2011).
    [Crossref] [PubMed]
  7. D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
    [Crossref]
  8. S. Valouch, H. Sieber, S. Kettlitz, C. Eschenbaum, U. Hollenbach, and U. Lemmer, “Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing,” Opt. Express 20(27), 28855–28861 (2012).
    [Crossref] [PubMed]
  9. I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
    [Crossref]
  10. NuSil Product Profile, LS-6941 (11 August 2008). http://www.silicone-polymers.co.uk/pdfMaster/LS-6941P.pdf .
  11. S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
    [Crossref]
  12. I. Martincek, D. Pudis, and P. Gaso, “Polydimethylsiloxane fibers for optical fiber sensor of displacement,” Proc. SPIE 8816, UNSP 88161D (2013).
  13. I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
    [Crossref]
  14. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
    [Crossref]
  15. D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
    [Crossref] [PubMed]
  16. Dow Corning Product Information, Sylgard 184 Silicone Elastomer (2014, April 2). http://www2.dowcorning.com/DataFiles/090276fe80190b08.pdf .

2014 (1)

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

2013 (1)

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

2012 (2)

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

S. Valouch, H. Sieber, S. Kettlitz, C. Eschenbaum, U. Hollenbach, and U. Lemmer, “Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing,” Opt. Express 20(27), 28855–28861 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

2009 (1)

2008 (1)

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

2002 (1)

D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
[Crossref] [PubMed]

2000 (1)

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Albanis, T. A.

D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
[Crossref] [PubMed]

Bondar, V. I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Cai, D. K.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Chung, A. J.

Csik, A.

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

Erickson, D.

Eschenbaum, C.

Foland, S.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Freeman, B. D.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Gaso, P.

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Heise, H. M.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Hollenbach, U.

Huang, C. S.

Huang, X. A.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Huszank, R.

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

Kacik, D.

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Kettlitz, S.

Kuckuk, R.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Lambropoulou, D. A.

D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
[Crossref] [PubMed]

Leduc, P. R.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Lee, J.-B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Lemmer, U.

Lin, Q. A.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Martincek, I.

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Merkel, T. C.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Nagai, K.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Neyer, A.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Nguyen, H.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Ni, J. H.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Pinnau, I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Pudis, D.

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Pun, E. Y. B.

Rajta, I.

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

Sakkas, V. A.

D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
[Crossref] [PubMed]

Sieber, H.

Swedlove, B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Szilsi, S. Z.

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

Tarjanyi, N.

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Turek, I.

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Valouch, S.

Wang, E. W. C.

Yan, S. M.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Yao, J.

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

D. A. Lambropoulou, V. A. Sakkas, and T. A. Albanis, “Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters,” Anal. Bioanal. Chem. 374(5), 932–941 (2002).
[Crossref] [PubMed]

J. Microelectromech. Syst. (2)

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, “Thermally tunable polymer microlenses for biological imaging,” J. Microelectromech. Syst. 19(6), 1444–1449 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Part B: Polym. Phys. (1)

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion and permeation in poly(dimetylsiloxane),” J. Polym. Sci., Part B: Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Opt. Commun. (1)

R. Huszank, S. Z. Szilsi, I. Rajta, and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Commun. 283(1), 176–180 (2010).
[Crossref]

Opt. Express (2)

Opt. Mater. (2)

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

I. Turek, N. Tarjanyi, I. Martincek, and D. Kacik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Photon. Technol. Lett. (1)

I. Martincek, D. Pudis, and P. Gaso, “Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper,” Photon. Technol. Lett. 25(21), 2066–2069 (2013).
[Crossref]

Other (5)

NuSil Product Profile, LS-6941 (11 August 2008). http://www.silicone-polymers.co.uk/pdfMaster/LS-6941P.pdf .

I. Martincek, D. Pudis, and P. Gaso, “Polydimethylsiloxane fibers for optical fiber sensor of displacement,” Proc. SPIE 8816, UNSP 88161D (2013).

Dow Corning Product Information, Sylgard 184 Silicone Elastomer (2014, April 2). http://www2.dowcorning.com/DataFiles/090276fe80190b08.pdf .

M. Andriot, J. V. DeGroot, R. Meeks, E. Gerlach, M. Jungk, A. T. Wolf, S. Cray, T. Easton, A. Mountney, S. Leadley, S. H. Chao, A. Colas, F. de Buyl, A. Dupont, J. L. Garaud, F. Gubbels, J. P. Lecomte, B. Lenoble, S. Stassen, C. Stevens, X. Thomas, and G. Shearer, “Silicones in industrial applications,” http://www.dowcorning.com/content/publishedlit/Silicones_in_Industrial_Applications_Internet_version_080325.pdf .

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).

Supplementary Material (1)

» Media 1: MOV (9607 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 a) Observation of the inhomogeneity. b) Photograph of a test object through the sample.
Fig. 2
Fig. 2 a) Measurement based on a beam deviation. b) Photo of the beam’s spot displayed on the screen.
Fig. 3
Fig. 3 a) Scheme of the interferometer. stm – semi-transparent mirror, m – mirror. b) Detail of the photograph of interference field.
Fig. 4
Fig. 4 Single-frame excerpt from video recording of the temporal evolution of the refractive index distribution close to the boundary during polymerization (see Media 1).
Fig. 5
Fig. 5 Observed deviation of the beam in dependence on distance from the boundary.
Fig. 6
Fig. 6 Dependence of grad(n) on position x.
Fig. 7
Fig. 7 Dependence of the refractive index on position x.
Fig. 8
Fig. 8 Illustration of the refractive index temporal evolution. Indication of the time is in hours. Insets show the time dependences of angle α for x = ± 0.4mm.
Fig. 9
Fig. 9 Comparison between the refractive index distributions near the surface of PDMS polymerized in a glass and in a polystyrene mold.
Fig. 10
Fig. 10 Interferograms of 1 cm thick samples in the molds.
Fig. 11
Fig. 11 Photographs of the guided beam in the bent sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δφ= 2π λ n x Δxd,
α( x )=arctg( n( x ) x d ).
n( x )=if( x<0, n 0 + x 01 x grad( n( x ) ) dx, n 0 + x x 02 grad( n( x ) ) dx ).

Metrics