Abstract

Graphene and other two-dimensional (2d) crystals are promising materials for photonic and optoelectronic applications. A key requirement for these applications is the development of industrial-scale, reliable, inexpensive production processes, while providing a balance between ease of fabrication and final material quality with on-demand properties. Solution-processing offers a simple and cost-effective pathway to fabricate various 2d crystal based photonic devices, presenting huge integration flexibility compared to conventional methods. Here we present an overview of graphene and other 2d crystals based ultrafast photonics, from solution processing of the raw bulk materials, the fabrication of saturable absorbers, to their applications in ultrafast lasers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [CrossRef] [PubMed]
  2. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
    [CrossRef]
  3. L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
    [CrossRef] [PubMed]
  4. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon. 7, 842–845 (2013).
    [CrossRef]
  5. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [CrossRef]
  6. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
    [CrossRef]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
    [CrossRef]
  8. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
    [CrossRef]
  9. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
    [CrossRef]
  10. Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
    [CrossRef]
  11. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
    [CrossRef]
  12. Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
    [CrossRef]
  13. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
    [CrossRef]
  14. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
    [CrossRef]
  15. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [PubMed]
  16. M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
    [CrossRef] [PubMed]
  17. R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
  18. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
    [CrossRef]
  19. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
    [CrossRef]
  20. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [CrossRef] [PubMed]
  21. M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
    [CrossRef] [PubMed]
  22. D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
    [CrossRef]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
    [CrossRef]
  24. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
    [CrossRef] [PubMed]
  25. A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
    [CrossRef]
  26. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.
  27. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [CrossRef]
  28. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
    [CrossRef] [PubMed]
  29. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
    [CrossRef]
  30. P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
    [CrossRef]
  31. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [CrossRef] [PubMed]
  32. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).
  33. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).
  34. N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
    [CrossRef]
  35. J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
    [CrossRef]
  36. M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
    [CrossRef] [PubMed]
  37. M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [CrossRef]
  38. P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
    [CrossRef]
  39. J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
    [CrossRef] [PubMed]
  40. V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
    [CrossRef]
  41. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
    [CrossRef] [PubMed]
  42. W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
    [CrossRef]
  43. Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
    [CrossRef]
  44. J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
    [CrossRef] [PubMed]
  45. C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
    [CrossRef]
  46. G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
    [CrossRef] [PubMed]
  47. E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem.,  3, 177–216 (1983).
    [CrossRef]
  48. J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.,  18, 193–335 (1969).
    [CrossRef]
  49. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
    [CrossRef] [PubMed]
  50. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
    [CrossRef]
  51. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
    [CrossRef]
  52. T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
    [CrossRef] [PubMed]
  53. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
    [CrossRef]
  54. J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
    [CrossRef]
  55. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
    [CrossRef]
  56. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
    [CrossRef]
  57. T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.
  58. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
    [CrossRef] [PubMed]
  59. A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
    [CrossRef]
  60. S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
    [CrossRef]
  61. Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
    [CrossRef]
  62. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
    [CrossRef] [PubMed]
  63. M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
    [CrossRef] [PubMed]
  64. A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett. 9, 4031–4036 (2009).
    [CrossRef] [PubMed]
  65. O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
    [CrossRef] [PubMed]
  66. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
    [CrossRef]
  67. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
    [CrossRef] [PubMed]
  68. F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
    [CrossRef]
  69. U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
    [CrossRef] [PubMed]
  70. A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
    [CrossRef]
  71. T. J. Mason, Sonochemistry (Oxford University, 1999).
  72. J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).
  73. http://echa.europa.eu/it/candidate-list-table
  74. H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
    [CrossRef] [PubMed]
  75. S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
    [CrossRef] [PubMed]
  76. T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
    [CrossRef]
  77. B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys. 59, 466 (1860).
  78. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
    [CrossRef]
  79. S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
    [CrossRef]
  80. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
    [CrossRef] [PubMed]
  81. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
    [CrossRef]
  82. Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
    [CrossRef]
  83. Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.
  84. H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
    [CrossRef]
  85. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
    [CrossRef] [PubMed]
  86. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
    [CrossRef] [PubMed]
  87. Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
    [CrossRef]
  88. K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
    [CrossRef]
  89. J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
    [CrossRef]
  90. L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
    [CrossRef]
  91. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
    [CrossRef]
  92. F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
    [CrossRef]
  93. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
    [CrossRef] [PubMed]
  94. U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
    [CrossRef]
  95. I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
    [CrossRef]
  96. T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).
  97. A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
    [CrossRef]
  98. D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).
  99. J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
    [CrossRef]
  100. J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem. 70, 2814–2822 (1966).
    [CrossRef]
  101. F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
    [CrossRef]
  102. M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
    [CrossRef] [PubMed]
  103. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
    [CrossRef]
  104. F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy 2010, 727134 (2010).
    [CrossRef]
  105. S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
    [CrossRef]
  106. M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem. 45, 275–290 (1953).
    [CrossRef] [PubMed]
  107. X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
    [CrossRef] [PubMed]
  108. S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
    [CrossRef]
  109. H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
    [CrossRef]
  110. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, and F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt.,  38, 966–971 (1999).
    [CrossRef]
  111. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
    [CrossRef]
  112. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [CrossRef]
  113. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
    [CrossRef]
  114. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
    [CrossRef] [PubMed]
  115. A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
    [CrossRef]
  116. G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
    [CrossRef]
  117. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
    [CrossRef]
  118. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
    [CrossRef]
  119. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
    [CrossRef] [PubMed]
  120. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [CrossRef]
  121. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
    [CrossRef]
  122. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
    [CrossRef] [PubMed]
  123. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
    [CrossRef]
  124. Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36, 3024–3026 (2011).
    [CrossRef] [PubMed]
  125. Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21, 16763–16776 (2013).
    [CrossRef] [PubMed]
  126. X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
    [CrossRef] [PubMed]
  127. Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21, 14859–14866 (2013).
    [CrossRef] [PubMed]
  128. Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
    [CrossRef]
  129. C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
    [CrossRef]
  130. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
    [CrossRef]
  131. J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
    [CrossRef]
  132. Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
    [CrossRef]
  133. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
    [CrossRef]
  134. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
    [CrossRef]
  135. D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol. 30, 984–989 (2012).
    [CrossRef]
  136. L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
    [CrossRef]
  137. B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
    [CrossRef]
  138. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013).
    [CrossRef] [PubMed]
  139. J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
    [CrossRef]
  140. S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express 20, 5652–5657 (2012).
    [CrossRef] [PubMed]
  141. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
    [CrossRef]
  142. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
    [CrossRef] [PubMed]
  143. M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
    [CrossRef]
  144. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
    [CrossRef] [PubMed]
  145. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
    [CrossRef] [PubMed]
  146. Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
    [CrossRef] [PubMed]
  147. X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
    [CrossRef]
  148. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
    [CrossRef]
  149. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
    [CrossRef] [PubMed]
  150. L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
    [CrossRef]
  151. L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
    [CrossRef]
  152. Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol. 30, 3259–3262 (2012).
    [CrossRef]
  153. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett. 37, 2652–2654 (2012).
    [CrossRef] [PubMed]
  154. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011).
    [CrossRef] [PubMed]
  155. Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
    [CrossRef]
  156. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
    [CrossRef]
  157. F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
    [CrossRef]
  158. C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).
  159. L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
    [CrossRef]
  160. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
    [CrossRef]
  161. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
    [CrossRef] [PubMed]
  162. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
    [CrossRef]
  163. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
    [CrossRef]
  164. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
    [CrossRef]
  165. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
    [CrossRef] [PubMed]
  166. J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
    [CrossRef] [PubMed]
  167. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
    [CrossRef] [PubMed]
  168. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
    [CrossRef]
  169. Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
    [CrossRef] [PubMed]
  170. Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
    [CrossRef]
  171. Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
    [CrossRef]
  172. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
    [CrossRef]
  173. G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
    [CrossRef]
  174. Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
    [CrossRef]
  175. Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
    [CrossRef] [PubMed]
  176. H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
    [CrossRef]
  177. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400–402 (2007).
    [CrossRef] [PubMed]
  178. Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express 15, 4139–4148 (2007).
    [CrossRef] [PubMed]
  179. Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon. 5, 446–447 (2011).
    [CrossRef]

2013 (29)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon. 7, 842–845 (2013).
[CrossRef]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21, 16763–16776 (2013).
[CrossRef] [PubMed]

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21, 14859–14866 (2013).
[CrossRef] [PubMed]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013).
[CrossRef] [PubMed]

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[CrossRef] [PubMed]

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

2012 (35)

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol. 30, 3259–3262 (2012).
[CrossRef]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett. 37, 2652–2654 (2012).
[CrossRef] [PubMed]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
[CrossRef] [PubMed]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[CrossRef] [PubMed]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express 20, 5652–5657 (2012).
[CrossRef] [PubMed]

D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol. 30, 984–989 (2012).
[CrossRef]

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
[CrossRef]

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
[CrossRef] [PubMed]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
[CrossRef]

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
[CrossRef]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

2011 (18)

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36, 3024–3026 (2011).
[CrossRef] [PubMed]

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011).
[CrossRef] [PubMed]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon. 5, 446–447 (2011).
[CrossRef]

2010 (23)

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy 2010, 727134 (2010).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
[CrossRef]

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[CrossRef]

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

2009 (14)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
[CrossRef] [PubMed]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett. 9, 4031–4036 (2009).
[CrossRef] [PubMed]

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef] [PubMed]

2008 (9)

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

2007 (6)

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400–402 (2007).
[CrossRef] [PubMed]

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express 15, 4139–4148 (2007).
[CrossRef] [PubMed]

2006 (5)

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

2005 (9)

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
[CrossRef] [PubMed]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
[CrossRef] [PubMed]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[CrossRef]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef] [PubMed]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

2004 (5)

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[CrossRef]

2003 (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

2002 (1)

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

1999 (1)

1996 (1)

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
[CrossRef]

1995 (1)

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

1989 (1)

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
[CrossRef]

1983 (1)

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem.,  3, 177–216 (1983).
[CrossRef]

1971 (1)

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

1969 (1)

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.,  18, 193–335 (1969).
[CrossRef]

1966 (1)

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem. 70, 2814–2822 (1966).
[CrossRef]

1958 (2)

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

1953 (1)

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem. 45, 275–290 (1953).
[CrossRef] [PubMed]

1860 (1)

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys. 59, 466 (1860).

Abidi, N.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

Abramski, K. M.

Acrivos, J. V.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

Agnoli, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Ahn, J. H.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Ahnood, A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Aizpurua, J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

Ajayan, P.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Amaratunga, G.A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Amendola, V.

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

Amezcua-Correa, R.

Ando, S.

Andrew, P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

Antaris, A. L.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

Arnold, M. S.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
[CrossRef] [PubMed]

Bachmatiuk, A.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

Backes, C.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Bai, J.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Balan, A.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

Baldwin, R. L.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

Bandarkar, F.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

Bando, Y.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Bao, Z.

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Barto, R. R.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

Beecher, S. J.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

Bellus, M. Z.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Benabid, F.

Bergin, S. D.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Bernard, F.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Blake, P.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

Blake, P. E.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

Blighe, F. M.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

Bo, Y.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef] [PubMed]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

Boguslawski, J.

Boland, J.

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

Boland, J. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy 2010, 727134 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Borghese, F.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Boschetto, D.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

Brakke, M. K.

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem. 45, 275–290 (1953).
[CrossRef] [PubMed]

Breusing, M.

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
[CrossRef] [PubMed]

Brodie, B. C.

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys. 59, 466 (1860).

Brown, C. L.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
[CrossRef]

Brown, C. T. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

Brown, G.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

Buchner, B.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

Burgess, B. A.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

Cabrales, L.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

Cai, Z.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Cai, Z. P.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

Calogero, G.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Cao, H.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Cao, J.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Cao, W.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Cao, W. J.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

Castellani, C. E. S.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

Castro Neto, A. H.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

Celik, O.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Chao, F.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Chapman, B. H.

Chen, H.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

Chen, J.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

Chen, S.

Chen, X.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Chen, Y.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
[CrossRef]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Chen, Y. H.

Chen, Y. P.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Cheng, H.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Cheng, R.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Chhowalla, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Chim, C-Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Chiu, H.-Y.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Cho, D. K.

Cho, J.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
[CrossRef]

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Choi, S. Y.

Chu, D.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Chu, D.P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Cole, M.T.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Coleman, J. N

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

Colombo, L.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

Connell, J. W.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
[CrossRef]

Corwin, K. L.

Couny, F.

Cucinotta, C. S.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

Cui, D. F.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Cui, Y.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013).
[CrossRef] [PubMed]

Cunning, B. V.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
[CrossRef]

Cunningham, G.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

Dai, H.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Dalton, A. R.

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Dalton, L. R.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Dang, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

De, S.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Dehm, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Denti, P.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Dhar, S.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Di Marco, G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

Dianov, E. M.

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Divin, C.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

Donegan, J.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

Donegan, J. F.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Duan, X.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Duesberg, G. S.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Ebrahim-Zadeh, M.

Eda, G.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Eiden, A. L.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

Elsaesser, T.

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
[CrossRef] [PubMed]

Elsayed-Ali, H. E.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Emplit, P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Essig, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Evans, D. G.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

Fakhree, M. A.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

Fan, D.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[CrossRef]

Fayaz, G. R.

Feng, C.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

Feng, M.

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

Ferrari, A.

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Ferrari, A. C.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon. 5, 446–447 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Ferrari, A.C.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Fievet, F.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
[CrossRef]

Figlarz, M.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
[CrossRef]

First, P. N.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

Flahaut, E.

Flewitt, A.J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

Frank, C. W.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Frischkorn, C.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

Fu, B.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Fujita, H.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

Fuse, K.

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Ganzhorn, M.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Garcia-Gancedo, L.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Garfunkel, E.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Gaucher, A.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Geim, A. K.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Geng, A. C.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

Ghotbi, M.

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express 15, 4139–4148 (2007).
[CrossRef] [PubMed]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Goh, C. S.

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

Golant, K. M.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

Golberg, D.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

Golling, M.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Gonzalez, J.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
[CrossRef]

Goodwin, A.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Gorza, S. P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Granozzi, G.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Green, A. A.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett. 9, 4031–4036 (2009).
[CrossRef] [PubMed]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

Grieveson, E. M.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[CrossRef]

Grunlan, J. C.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Gucciardi, P.G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

Gui, L.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Gui, L. L.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Guinea, F.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
[CrossRef]

Guo, L.

Hajlaoui, M.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

Halim, U.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Hallam, T.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Han, W. Q.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Hanlon, D.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

Hao, G.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

Hao, X.-P.

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

Hasan, M.

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[CrossRef]

Hasan, T.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

He, D.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

He, J.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

He, J.-L.

He, X.

He, X. Y.

Hennrich, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

Hernandez, Y.

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

Hersam, M. C.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett. 9, 4031–4036 (2009).
[CrossRef] [PubMed]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
[CrossRef] [PubMed]

Hersam, M.C.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Hill, W.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

Hiralal, P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Hoffman, S.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Holdynski, M.

Hou, W.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Hsieh, G-W.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Hsieh, W.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

Hu, J.

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

Huang, Y.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Hulvat, J. F.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Hutchison, J.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

Iati, M. A.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Ifft, J. B.

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem. 70, 2814–2822 (1966).
[CrossRef]

Inoue, Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Ippen, E. P.

Israelachvili, J.

J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

Jagiello, J.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Jang, S.-Y.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
[CrossRef]

Jen, A. K. Y.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Jen, A. K.-H.

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Jhon, Y. M.

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

Jiang, D.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Jiang, L.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Jiang, S.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Jiang, Z.

Jie, L.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Jones, P. H.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Jose, R.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Jouyban, A.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

Jun, X.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Jung, M.

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Jung, S.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Kampfrath, T.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

Kane, C.

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[CrossRef]

Kang, S. H.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Kappes, M. M.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Kar, A. K.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

Kelleher, E. J. R.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Kelly, M.J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Kennedy, G. L.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

Khan, U.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Khattab, I. S.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

Khotkevich, V. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Kielpinski, D.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
[CrossRef]

Kim, H.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
[CrossRef]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Kim, K.

King, P. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Kityk, I. V.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Knabe, K.

Knight, J. C.

Knize, R. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Kobayashi, J.

Koo, J.

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[CrossRef] [PubMed]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Kotake, T.

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

Kozinski, R.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

Kravets, V. G.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

Krupke, R.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Kulmala, T.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Kumar, N.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Kumar, R.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

Lagier, J. P.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
[CrossRef]

Lazzeri, M.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

Lee, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Lee, K.

Lee, S.

Lee, Y.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Li, H.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
[CrossRef] [PubMed]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Li, H. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Li, J.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Li, K.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Li, L.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Li, L. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Li, R. N.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Li, S.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Li, X.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Li, X. H.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

Li, X.-L.

Li, Y.

Liang, W. Y.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

Liangbi, S.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Liao, C.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).

Lidorikis, E.

Light, P. S.

Lihe, Z.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Lim, C. T.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Lim, J. K.

Lin, G.-R.

Lin, X.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Lin, X. C.

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Lin, Y.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
[CrossRef]

Lin, Y.-H.

Liou, J.-H.

Lipinska, L.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

Liu, J.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
[CrossRef]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
[CrossRef] [PubMed]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol. 30, 3259–3262 (2012).
[CrossRef]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[CrossRef] [PubMed]

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

Liu, S.-D.

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Liu, Y.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

Liu, Z.

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21, 14859–14866 (2013).
[CrossRef] [PubMed]

D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol. 30, 984–989 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Liu, Z. B.

Liu, Z.-b.

Loh, K.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Loh, K. P.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Lohneysen, H. v.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Lombardo, A.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

Lu, G.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

Lu, S.

Luo, A. P.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

Luo, D.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

Luo, J. D.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Luo, Z.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Luo, Z. C.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

Luo, Z. Q.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

Ma, H.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Ma, X. Y.

Majchrowski, A.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Mangold, M.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

Mao, N-N.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Marago, O. M.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Marquardt, C. W.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Marseglia, E.

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem.,  3, 177–216 (1983).
[CrossRef]

Marsi, M.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon. 7, 842–845 (2013).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[CrossRef] [PubMed]

Martinez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

Maruno, T.

Maruyama, S.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Mary, R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

Mason, T. J.

T. J. Mason, Sonochemistry (Oxford University, 1999).

Mastrogiovanni, D.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Matsuura, T.

Mattevi, C.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Mauri, F.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

May, P.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

Mazher, J.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

McCloskey, D.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

McComb, D. W.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

McGovern, T.

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

Menzel, R.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

Mertens, J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

Michalski, E.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Milana, S.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Miller, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

Milne, W.I.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Minett, A. I.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Miotkowski, I.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Mkhoyan, K. A.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Moriarty, G.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Mullen, K.

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
[CrossRef] [PubMed]

Murakami, Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

Nathan, A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Nawaz, K.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

Neely, W.

Nellist, P. D.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Ni, G. X.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Nicholls, R. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Nicholson, J. W.

Nicolosi, V.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

Nirmalraj, P. N.

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

Norris, T. B.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

Novoselov, K. S.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

O’Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Oh, K.

Ohara, S.

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[CrossRef]

Ou, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Ozyilmaz, B.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Pal, M.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

Paletko, P.

Papalazarou, E.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

Park, J.

Paul, M. C.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

Paul, P. J.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Pedersen, K. O.

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

Peng, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Peng, Q.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Peng, Q. J.

Peng, Y.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

Perfetti, L.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[CrossRef]

Piner, R. D.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Piscanec, S.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

Popa, D.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Popov, S. V.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

Porwal, H.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

Privitera, G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Psaila, N. D.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

Qi, J.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Qi, W.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Qi, X.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

Qiao, S.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Qu, Z.

Qu, Z. S.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

Ramakrishna, S.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Rammeli, M. H.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

Ren, L.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

Ren, Z.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Robertson, J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

Robinson, J. T.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Rotermund, F.

Roy Barman, A.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Rozhin, A.

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

Rozhin, A. G.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Ruan, S. C.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

Rubhausen, M.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Ruoff, R. S.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Ruzicka, B. A.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Saija, R.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

Samanta, G. K.

Sanvito, S.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

Sasaki, S.

Scardaci, V.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Schedin, F.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Sciascia, C.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

Seo Jung-Woo, T.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

Set, S. Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

Shaffer, M. S. P.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

Shen, D. Z.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Shen, Z-X.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Sheng, Q.

Shi, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Shmeliov, A.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Shukla, A.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

Shum, P. P.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

Sibbett, W.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

Sieber, O. D.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Smirnov, D.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Smith, R. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Sobon, G.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

Solomon, H. M.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

Song, Y.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

Song, Y. W.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

Song, Y.-W.

Sotor, J.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Staples, R. E.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

Stupp, S. I.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
[CrossRef] [PubMed]

Su, C. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Su, L. B.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

Sun, D.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Sun, R.

Sun, X.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Sun, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Sun, Z.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon. 7, 842–845 (2013).
[CrossRef]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon. 5, 446–447 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400–402 (2007).
[CrossRef] [PubMed]

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express 15, 4139–4148 (2007).
[CrossRef] [PubMed]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Sun, Z. P.

Suzuki, Y.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Svedberg, T.

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

Taleb-Ibrahimi, A.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

Tan, F.

Tan, P.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Tan, W. D.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

Tang, C.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

Tang, D.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
[CrossRef]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

Tang, D. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Tang, P.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

Taniguchi, T.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Tascon, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

Taylor, J. R.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

Theuwissen, K.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Thomson, R. R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

Tian, J.

Tillman, K. A.

Tolk, N. H.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Torrisi, F.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Travers, J. C.

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

Tsang, Y.

Tsang, Y. H.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

Tsanga, Y. H.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

Van Holde, K. E.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

Venkatesan, T.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Vijayaraghavan, A.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

Vinograd, J.

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem. 70, 2814–2822 (1966).
[CrossRef]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

Vozmediano, M.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

Wang, G. L.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Wang, H-X.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Wang, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

Wang, J. Z.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Wang, P.

Wang, Q.

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
[CrossRef]

Wang, Q. J.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

Wang, R.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Wang, S.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

Wang, X.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
[CrossRef] [PubMed]

Wang, X. Q.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Wang, Y.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol. 30, 3259–3262 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Wang, Y. G.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
[CrossRef] [PubMed]

Wang, Y. S.

Wang, Z.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

Warner, J. H.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

Washburn, B. R.

Watanabe, K.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Wei, H.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Welsher, K.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Wen, S.

White, I.

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

White, I. H.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

Wilkinson, T.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Williams, J. W.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

Williams, T. V.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
[CrossRef]

Wilson, J.

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.,  18, 193–335 (1969).
[CrossRef]

Wilson, J. A.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

Wirtz, C.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

Wittwer, V. J.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Wolf, M.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

Wu, D.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Wu, L.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Wu, S.

Wu, W.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

Wu, Y.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Wu, Y.-Z.

Wu, Z.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

Xiao, X.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Xiao, X. S.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Xie, G. Q.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

Xin, W.

Xu, B.

Xu, H.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Xu, J.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
[CrossRef]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
[CrossRef] [PubMed]

Xu, J.-L.

Xu, T-B.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

Xu, W. C.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

Xu, X. F.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Xu, Z.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Xu, Z. Y.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef] [PubMed]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

Yamamoto, F.

Yamashita, S.

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

Yan, P. G.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

Yang, C.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Yang, C. X.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Yang, C.-Y.

Yang, J.-x.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Yang, K.-J.

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
[CrossRef]

Yang, L.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

Yang, Q.-H.

Yang, R.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

Yang, X.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Yang, X. D.

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Yang, Y.

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett. 37, 2652–2654 (2012).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
[CrossRef]

Ye, C. C.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

Yeom, D.-I.

Yin, Z.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Ying, Z.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Yoffe, A.

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.,  18, 193–335 (1969).
[CrossRef]

Yoffe, A. D.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

Yong, B.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Yonggang, W.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Young, K.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Yu, C.-P.

Yu, H.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Yu, W.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

Yu, X.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

Yu, Z.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

Yuan, X.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Yue, Q.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

Zao, X.

Zaric, S.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Zaugg, C.A.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Zdrojek, M.

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Zerbetto, M.

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

Zhang, B.-T.

Zhang, G. L.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

Zhang, H.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
[CrossRef]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Zhang, H. B.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

Zhang, H-L.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Zhang, M.

Zhang, Q.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Zhang, S.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

Zhang, W.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Zhang, X.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

Zhang, Y.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

Zhao, C.

Zhao, H.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Zhao, J. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

Zhao, W.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Zhao, W. L.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

Zheng, C. R.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Zheng, L. H.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

Zheng, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Zheng, X.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Zheng, Z.

Zhi, C. Y.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

Zhi, L.

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
[CrossRef] [PubMed]

Zhong, J.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

Zhou, K. G.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Zhou, M.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

Zhou, Y.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

Zhu, F.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

Zhu, H.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Zhu, H. W.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

Zhu, Y.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Zou, Y.

ACS Nano (7)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano 7, 9260–9267 (2013).
[CrossRef] [PubMed]

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano 4, 1299–1304 (2010).
[CrossRef] [PubMed]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano 6, 3468–3480 (2012).
[CrossRef] [PubMed]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano,  6, 2992–3006 (2012).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[CrossRef] [PubMed]

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano 4, 3381–3389 (2010).
[CrossRef] [PubMed]

ACS Nano. (1)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano. 6, 74–80 (2012).
[CrossRef]

Adv. Funct. Mater. (2)

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater. 19, 2577–2583 (2009).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20, 782–791 (2010).
[CrossRef]

Adv. Mater. (6)

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater. 23, 3944–3948 (2011).
[CrossRef] [PubMed]

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.,  21, 2430–2435 (2009).
[CrossRef]

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater. 21, 2889–2893 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20, 4040–4043 (2008).
[CrossRef]

Adv. Phys. (1)

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.,  18, 193–335 (1969).
[CrossRef]

AIP Advances (1)

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances 1, 022109 (2011).
[CrossRef]

Angewandte Chemie Int. Ed. (1)

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed. 50, 10839–10842 (2011).
[CrossRef]

Ann. Chim. Phys. (1)

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys. 59, 466 (1860).

Appl. Opt. (2)

T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, and F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt.,  38, 966–971 (1999).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt. 43, 2499–2503 (2006).
[CrossRef]

Appl. Phys. Express (3)

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[CrossRef]

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express 5, 055103 (2012).
[CrossRef]

Appl. Phys. Lett. (21)

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett. 99, 261109 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[CrossRef]

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98, 021104 (2011).
[CrossRef]

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett. 93, 223103 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95, 253102 (2009).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett. 97, 182102 (2010).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97, 111114 (2010).
[CrossRef]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102, 013113 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett. 99, 261107 (2011).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009).
[CrossRef]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89, 173124 (2006).
[CrossRef]

Arch. Biochem. (1)

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem. 45, 275–290 (1953).
[CrossRef] [PubMed]

Carbon (1)

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[CrossRef]

Chem Rev. (1)

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev. 58, 715–806 (1958).
[CrossRef]

Chem. Mater. (1)

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater. 24, 2414–2421 (2012).
[CrossRef]

Drug Chem Toxicol. (1)

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol. 18, 271–293 (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett. 41, 171–173 (2005)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.,  10, 137–146 (2004).
[CrossRef]

IEEE Photonics (1)

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics 5, 1500707 (2013).
[CrossRef]

IEEE Photonics Journal (2)

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal 4, 1295–1305 (2012).
[CrossRef]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal 4, 1809–1815 (2012).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett. 23, 1790–1792 (2011).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).
[CrossRef]

Int. J. Photoenergy (1)

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy 2010, 727134 (2010).
[CrossRef]

Int. Rev. Phys. Chem. (1)

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem.,  3, 177–216 (1983).
[CrossRef]

J. Am. Chem. Soc. (2)

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131, 3611–3620 (2009).
[CrossRef] [PubMed]

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

J. Appl. Phys. (1)

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys. 113, 133702 (2013).
[CrossRef]

J. Electroanal. Chem (1)

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem.,  703, 135–145 (2013).
[CrossRef]

J. Lightwave Technol. (3)

J. Mater. Chem. (1)

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22, 4921–4926 (2012).
[CrossRef]

J. Mater. Chem. C (1)

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C 1, 6899–6904 (2013).
[CrossRef]

J. Phys. C (1)

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C,  4, L18 (1971).
[CrossRef]

J. Phys. Chem. (1)

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem. 70, 2814–2822 (1966).
[CrossRef]

J. Phys. Chem. C (3)

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C 117, 13217–13229 (2013).
[CrossRef]

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C 115, 2679–2685 (2011).
[CrossRef]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C 115, 5422–5428 (2011).
[CrossRef]

J. Phys. Chem. C. (1)

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C. 114, 17267–17285 (2010).
[CrossRef]

J. Phys. Chem. Lett. (2)

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett. 1, 277–283 (2010).
[CrossRef]

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett. 2, 1004–1008 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2  45, L17–L19 (2006).
[CrossRef]

Korean J. Chem. Eng. (1)

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng.,  29, 812–817 (2012).
[CrossRef]

Langmuir (3)

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008).
[CrossRef] [PubMed]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir,  27, 9077–9082 (2011).
[CrossRef] [PubMed]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir 25, 11078–11081 (2009).
[CrossRef] [PubMed]

Laser Phys. (4)

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013).
[CrossRef]

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys. 23, 035110 (2013).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys. 21, 2072–2075 (2011).
[CrossRef]

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys. 23, 065802 (2013).
[CrossRef]

Laser Phys. Lett. (6)

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett. 10, 015101 (2013).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett. 7, 790–794 (2010).
[CrossRef]

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett. 10, 075108 (2013).
[CrossRef]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett. 9, 15–19 (2012).
[CrossRef]

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9, 229–233 (2012).
[CrossRef]

Macromolecules (1)

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules 36, 4355–4359 (2003).
[CrossRef]

Mater. Today (1)

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[CrossRef]

Nano Lett. (9)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[CrossRef] [PubMed]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett. 10, 1589–1594 (2010).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett. 9, 4031–4036 (2009).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).
[CrossRef] [PubMed]

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13, 5033–5038 (2013).
[CrossRef] [PubMed]

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
[CrossRef] [PubMed]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett. 5, 713–718 (2005).
[CrossRef] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2012).
[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2007).
[CrossRef] [PubMed]

Nano Res. (3)

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1, 203–212 (2008).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

Nature Chem. (1)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem. 4, 281–286 (2012).
[CrossRef]

Nature Comm. (1)

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm. 4, 2213 (2013).
[CrossRef]

Nature Nanotech. (3)

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech. 1, 60–65 (2006).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech. 3, 563–568 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[CrossRef]

Nature Photon. (3)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon. 7, 842–845 (2013).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon. 5, 446–447 (2011).
[CrossRef]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[CrossRef]

Opt. Commun. (7)

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun. 298–299, 168–170 (2013).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469 (2012).
[CrossRef]

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun. 286, 304–308 (2013).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun. 232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun. 241, 167–172 (2004).
[CrossRef]

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun. 259, 820–822 (2006).
[CrossRef]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[CrossRef]

Opt. Express (19)

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[CrossRef] [PubMed]

J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12, 6428–6433 (2004).
[CrossRef] [PubMed]

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express 15, 4139–4148 (2007).
[CrossRef] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013).
[CrossRef] [PubMed]

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21, 14859–14866 (2013).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012).
[CrossRef] [PubMed]

S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express 20, 5652–5657 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012).
[CrossRef] [PubMed]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[CrossRef] [PubMed]

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21, 16763–16776 (2013).
[CrossRef] [PubMed]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef] [PubMed]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13, 4085–4089 (2005).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2012).
[CrossRef]

Opt. Lett. (8)

Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36, 3024–3026 (2011).
[CrossRef] [PubMed]

X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400–402 (2007).
[CrossRef] [PubMed]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett. 37, 2652–2654 (2012).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36, 3996–3998 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809 (2009).
[CrossRef] [PubMed]

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).
[CrossRef]

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403 (2005).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett. 95, 236802 (2005).
[CrossRef]

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett. 77, 3589 (1996).
[CrossRef]

Phys. Status Solidi B (1)

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B 247, 2953–2957 (2010).
[CrossRef]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

PNAS (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451–10453 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[CrossRef]

Sci. Rep. (2)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[CrossRef] [PubMed]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science 320, 1308(2008).
[CrossRef]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331, 568–571 (2011).
[CrossRef] [PubMed]

Solid State Commun. (1)

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun. 149, 718–721 (2009).
[CrossRef]

Solid State Ionics (1)

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics,  32, 198–205 (1989).
[CrossRef]

Other (11)

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

T. J. Mason, Sonochemistry (Oxford University, 1999).

J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).

http://echa.europa.eu/it/candidate-list-table

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1:
Fig. 1:

Crystal and band structure of (a) Graphene, (b) MoS2 and (c) Bi2Te3. For Bi2Te3 the shaded regions represent bulk states while the red dashed lines are surface states.

Fig. 2:
Fig. 2:

Liquid phase exfoliation of LMs.(a) Starting material (e.g., graphite), (b) chemical wet dispersion, (c) ultrasonication and (d) final dispersion after the ultracentrifugation process.

Fig. 3:
Fig. 3:

Typical GSA mode-locked fiber laser: (a) integrated GSA device. (b) laser setup. WDM: wavelength division multiplexer; (c) pulse duration [160] (d) Tunable fiber lasers [10].

Tables (1)

Tables Icon

Table 1: Representative output performance of mode-locked lasers using 2d crystals fabricated by solution processing method. T: transmissive type, R: reflective type. PM: Polyol method. EDFL, YDFL and TDFL: Erbium-, Ytterbium- and Thulium- doped fiber lasers, respectively.

Metrics