Abstract

Cellulose derivatives, because of their molecular structure and chirality, can self-assemble to form spatially periodic cholesteric liquid crystal phases. We have synthesized and produced solid cross-linked cholesteric cellulose based films optimized to provide high reflectivity. Since these films are self-assembled photonic bandgap materials, they may be expected to show distributed feedback lasing. By doping samples with fluorescent dyes and optically pumping thin films of these materials, we were able to demonstrate, to the best of our knowledge, for the first time, mirrorless band-edge lasing in cellulose derivatives.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jarvis, “Chemistry: cellulose stacks up,” Nature426(6967), 611–612 (2003).
    [CrossRef] [PubMed]
  2. D. G. Gray, “Chiral nematic colloidal suspensions and films of cellulose,” Abstr. Pap. Am. Chem. S.219, U273 (2000).
  3. Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
    [PubMed]
  4. M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
    [CrossRef]
  5. S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
    [CrossRef]
  6. S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982).
    [CrossRef]
  7. Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
    [CrossRef]
  8. C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995).
    [CrossRef]
  9. P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
    [CrossRef] [PubMed]
  10. H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971).
    [CrossRef]
  11. Liquid Crystal Microlasers, ed. L. M. Blinov, R. Bartolino, (Transworld Research Network, Trivandrum, 2010).
  12. B. Taheri, P. Palffy-Muhoray, and H. Kabir, Cuyahoga Falls, Feb. 18–19 ALCOM Symposium: Chiral Materials and Applications (1999).
  13. W. Haase, F. Podgornov, Y. Matsuhisa, and M. Ozaki, Nanophotonic Materials, Photonic Crystals, Plasmonics and Metamaterials. (Wiley-VCH, Weinheim, 2008), Chap. 13.
  14. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
    [CrossRef]
  15. Liquid Crystal Elastomers: Materials and Application, Advances in Polymer Science 250, ed. W. H. de Jeu (Springer, Heidelberg, 2012).
  16. M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000).
    [CrossRef]
  17. A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell thickness,” Opt. Lett.37, 2904–2906 (2012).
    [CrossRef] [PubMed]
  18. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
    [CrossRef]
  19. D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013).
    [CrossRef]
  20. A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
    [CrossRef]
  21. W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
    [CrossRef]
  22. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]

2013 (2)

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013).
[CrossRef]

2012 (1)

2010 (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

2006 (1)

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

2005 (1)

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

2004 (1)

A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
[CrossRef]

2003 (1)

M. Jarvis, “Chemistry: cellulose stacks up,” Nature426(6967), 611–612 (2003).
[CrossRef] [PubMed]

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

2000 (2)

D. G. Gray, “Chiral nematic colloidal suspensions and films of cellulose,” Abstr. Pap. Am. Chem. S.219, U273 (2000).

M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000).
[CrossRef]

1997 (1)

M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
[CrossRef]

1995 (1)

C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995).
[CrossRef]

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

1985 (1)

Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
[CrossRef]

1982 (2)

S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
[CrossRef]

S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982).
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971).
[CrossRef]

Abbate, G.

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

Almeida, P. L.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Bhadani, S. N.

S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982).
[CrossRef]

Bunning, T. J.

Cai, B.-

C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995).
[CrossRef]

Cao, W.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

Cheng, C.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

Doane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Fernandes, S. N.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

Geng, Y.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Godinho, M. H.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Gray, D. G.

D. G. Gray, “Chiral nematic colloidal suspensions and films of cellulose,” Abstr. Pap. Am. Chem. S.219, U273 (2000).

S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982).
[CrossRef]

S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
[CrossRef]

Jarvis, M.

M. Jarvis, “Chemistry: cellulose stacks up,” Nature426(6967), 611–612 (2003).
[CrossRef] [PubMed]

Keller, H.

M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
[CrossRef]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971).
[CrossRef]

Kosa, T.

Laivins, G. V.

S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
[CrossRef]

Luchette, P.

Marino, A.

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

McConney, M. E.

Mikul'skii, G. F.

A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
[CrossRef]

Moreira, M.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

Müller, M.

M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000).
[CrossRef]

M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
[CrossRef]

Munoz, A.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

Muñoz, A.

Nishio, Y.

Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
[CrossRef]

Palffy-Muhoray, P.

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971).
[CrossRef]

Shipovskaya, A. B.

A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
[CrossRef]

Sukhomlinova, L.

Taheri, B.

A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell thickness,” Opt. Lett.37, 2904–2906 (2012).
[CrossRef] [PubMed]

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

Takahashi, T.

Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
[CrossRef]

Timofeeva, G. N.

A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
[CrossRef]

Tseng, S.

S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
[CrossRef]

Wenzlik, D.

D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

White, T. J.

Yamane, T.

Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
[CrossRef]

Yang, D. K.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Zentel, R.

D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013).
[CrossRef]

M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000).
[CrossRef]

M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
[CrossRef]

Zhao, C.

C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995).
[CrossRef]

Abstr. Pap. Am. Chem. S. (1)

D. G. Gray, “Chiral nematic colloidal suspensions and films of cellulose,” Abstr. Pap. Am. Chem. S.219, U273 (2000).

Adv. Mater. (2)

M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971).
[CrossRef]

J. Appl. Phys. (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. Polym. Sci., Polym. Phys. Ed. (1)

Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985).
[CrossRef]

Macromol. Chem. Phys. (2)

D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013).
[CrossRef]

M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000).
[CrossRef]

Macromol. Rapid Commun. (2)

C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995).
[CrossRef]

S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982).
[CrossRef]

Macromolecules (1)

S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005).
[CrossRef]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

Nature (1)

M. Jarvis, “Chemistry: cellulose stacks up,” Nature426(6967), 611–612 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Philos Trans A Math Phys Eng Sci (1)

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006).
[CrossRef] [PubMed]

Russ. J. Appl. Chem. (1)

A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004).
[CrossRef]

Sci Rep (1)

Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013).
[PubMed]

Other (4)

Liquid Crystal Elastomers: Materials and Application, Advances in Polymer Science 250, ed. W. H. de Jeu (Springer, Heidelberg, 2012).

Liquid Crystal Microlasers, ed. L. M. Blinov, R. Bartolino, (Transworld Research Network, Trivandrum, 2010).

B. Taheri, P. Palffy-Muhoray, and H. Kabir, Cuyahoga Falls, Feb. 18–19 ALCOM Symposium: Chiral Materials and Applications (1999).

W. Haase, F. Podgornov, Y. Matsuhisa, and M. Ozaki, Nanophotonic Materials, Photonic Crystals, Plasmonics and Metamaterials. (Wiley-VCH, Weinheim, 2008), Chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of cholesteric structure. The dashed line is the helix axis.

Fig. 2
Fig. 2

Chemical structures of the constitutents. CTC = cellulose tricarbanilate, TFAA = trifluoroacetic acid, TFE = trifluoro ethanol, EGMEA = ethylene glycol methyl ether acrylate, Lucirin TOP = photoinitiator

Fig. 3
Fig. 3

Transmittance and perpendicular reflectance of a crosslinked elastomer films.

Fig. 4
Fig. 4

Appearance of 50μm thick unpolymerized cellulose film with the dye PY on microscope slide.

Fig. 5
Fig. 5

Appearance of 90μm thick polymerized cellulose film with the dye PM on microscope slide.

Fig. 6
Fig. 6

Excitation and emission spectra of Potomac Yellow (PY) dye in cellulose. The response to excitation was measured at λem = 530nm, while excitation for the emission spectrum was at λex = 450nm.

Fig. 7
Fig. 7

Chemical structure of the Potomac Yellow (PY) dye.

Fig. 8
Fig. 8

Experimental setup. Pump pulses from a nanosecond laser were focused on the cellulose tricabanilate sample. Laser emission was measured with a spectrometer. The same experimental setup, was used throughout. Details are given in the text.

Fig. 9
Fig. 9

Reflection band and emission spectrum from two unpolymerized samples with PY dye. The pump beam is visible at 450nm. For both samples, laser emission is near the high-energy band edge.

Fig. 10
Fig. 10

Emission intensity from the 25μm thick sample with PY dye as function of pump energy. Pump pulses were 6ns wide at λ = 450nm. The lasing threshold is 60μJ/pulse.

Fig. 11
Fig. 11

Excitation and emission spectra of Pyrromethene (P597) dye in cellulose. The response to excitation was measured at λem = 565nm, while excitation for the emission spectrum was at λex = 532nm.

Fig. 12
Fig. 12

Chemical structure of the Pyrromethene (P597) dye.

Fig. 13
Fig. 13

Right circularly polarized (RCP) reflectance and emission from a 90μm thick polymerized sample with P597 dye. Laser emission is near the center of the reflection band. The reflected light and lasing are right circularly polarized.

Fig. 14
Fig. 14

Emission from a 90μm thick polymerized sample with P597 dye for different pump energies (μJ/pulse) showing line narrowing.

Fig. 15
Fig. 15

Emission from a 90μm thick polymerized sample with P597 dye for different pump energies. Pump pulses were 7.5ns wide at λ = 532nm. The lasing threshold is 1.8μJ/pulse.

Metrics