Abstract

We report on the results from a comparative study on the continuous-wave laser performance of Yb:YGG, Yb:LuGG, and Yb:GGG gallium garnets grown by the optical floating zone technique, conducted under identical experimental conditions. 5−7 W of output powers were generated with the three garnet crystals in a compact linear resonator longitudinally pumped by a diode laser emitting at 970−974 nm. The optical-to-optical and slope efficiencies measured for Yb:YGG amounted to 68% and 80%, respectively, which proved to be much higher than the corresponding efficiencies for Yb:LuGG (49% and 60%) or Yb:GGG (52% and 64%).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
    [CrossRef]
  2. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B23(4), 676–683 (2006).
    [CrossRef]
  3. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
    [CrossRef] [PubMed]
  4. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express18(20), 20712–20722 (2010).
    [CrossRef] [PubMed]
  5. J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
    [CrossRef]
  6. X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express13(19), 7708–7719 (2005).
    [CrossRef] [PubMed]
  7. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
    [CrossRef]
  8. K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B29(9), 2320–2328 (2012).
    [CrossRef]
  9. Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34(21), 3316–3318 (2009).
    [CrossRef] [PubMed]
  10. Y. Zhang, Z. Wei, Q. Wang, D. Li, Z. Zhang, H. Yu, H. Zhang, J. Wang, and L. Lv, “Diode-pumped efficient continuous-wave Yb:Y3Ga5O12 laser at 1035 nm,” Opt. Lett.36(4), 472–474 (2011).
    [CrossRef] [PubMed]
  11. J. Liu, X. Tian, Z. Zhou, K. Wu, W. Han, and H. Zhang, “Efficient laser operation of Yb:Lu3Ga5O12 garnet crystal,” Opt. Lett.37(12), 2388–2390 (2012).
    [CrossRef] [PubMed]
  12. J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
    [CrossRef]
  13. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
    [CrossRef]

2012

2011

2010

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

2009

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34(21), 3316–3318 (2009).
[CrossRef] [PubMed]

J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
[CrossRef]

2007

2006

2005

2003

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

1988

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Beil, K.

Boughton, R. I.

Boulon, G.

Brenier, A.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Canibano, H.

Chang, J.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Ding, S.

Dong, J.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Eganyan, A.

Fredrich-Thornton, S. T.

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Guyot, Y.

Han, W.

J. Liu, X. Tian, Z. Zhou, K. Wu, W. Han, and H. Zhang, “Efficient laser operation of Yb:Lu3Ga5O12 garnet crystal,” Opt. Lett.37(12), 2388–2390 (2012).
[CrossRef] [PubMed]

J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
[CrossRef]

Hao, L.

Huber, G.

Jaque, D.

Jiang, M.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Kaminskii, A. A.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

Kränkel, C.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Li, D.

Li, P.

Li, S.

Liu, J.

Lv, L.

Mateos, X.

J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
[CrossRef]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Petermann, K.

Peters, R.

Petrosyan, A. G.

Petrov, V.

J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Ródenas, A.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Tellkamp, F.

Tian, X.

Ueda, K.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

Wang, J.

Wang, Q.

Wang, Y.

Wang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express13(19), 7708–7719 (2005).
[CrossRef] [PubMed]

Wei, Z.

Wu, K.

Xu, C.

Yao, B.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34(21), 3316–3318 (2009).
[CrossRef] [PubMed]

Yu, H.

Zhang, H.

Zhang, S.

Zhang, X.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express13(19), 7708–7719 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhang, Z.

Zhou, B.

Zhou, Z.

Zou, Y.

IEEE J. Quantum Electron.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

J. Liu, W. Han, H. Zhang, X. Mateos, and V. Petrov, “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals,” IEEE J. Quantum Electron.45(7), 807–815 (2009).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

J. Dong, K. Ueda, and A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett.7(10), 726–733 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Variation of absorption with incident pump power for Yb:YGG, Yb:LuGG, and Yb:GGG crystals.

Fig. 2
Fig. 2

Output power versus Pabs for (a) Yb:YGG, (b) Yb:LuGG, and (c) Yb:GGG lasers measured for different output couplings in a range of T = 0.5−30%.

Fig. 3
Fig. 3

Laser emission spectra measured at an intermediate pump power level for different output couplings. (a): Yb:YGG, Pabs = 5.82 W; (b): Yb:LuGG, Pabs = 6.33 W; and (c): Yb:GGG, Pabs = 6.41 W.

Fig. 4
Fig. 4

Evolution of laser emission spectrum with increasing pump power, measured for the Yb:YGG crystal in the case of T = 0.5%.

Fig. 5
Fig. 5

Round-trip gain versus wavelength for the Yb:YGG laser, calculated for three different values of the parameter β.

Tables (3)

Tables Icon

Table 1 Summary of the Main Spectroscopic Parameters for the Three Gallium Garnets

Tables Icon

Table 2 Results Obtained from a Caird Analysis for the Three Gallium Garnet Crystal Lasers

Tables Icon

Table 3 Parameters Characterizing the cw Laser Performance of the Three Gallium Garnets Obtained under Optimum Output Coupling Conditions (T = 1% for Yb:YGG, T = 10% for both Yb:LuGG and Yb:GGG)

Metrics