Abstract

We present theoretical studies on the orientation control of micro-domains in anisotropic laser ceramics, and produce the distribution function of the crystal orientation in micro-domains including anisotropic laser ceramics. Also the improvement in the orientation distribution caused by preferential grain growth is discussed, where our theoretical analyses were applied to several different Nd:FAP ceramics. Detailed XRD analyses based on this distribution function show that the preferential grain growth improved the orientation distribution of the green body that was slip-casted under magnetic field.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
    [CrossRef]
  2. A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
    [CrossRef]
  3. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA1.
    [CrossRef]
  4. Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
    [CrossRef]
  5. Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
    [CrossRef]
  6. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
    [CrossRef]
  7. S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
    [CrossRef]
  8. T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
    [CrossRef]
  9. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
    [CrossRef]
  10. W. D. Kingerly, H. K. Brown, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1975), Chap. 5.
  11. M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
    [CrossRef]
  12. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express20(18), 20002–20010 (2012).
    [CrossRef] [PubMed]
  13. H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).
  14. M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
    [CrossRef]
  15. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
    [CrossRef] [PubMed]
  16. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
    [CrossRef]
  17. F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem.9(2), 113–123 (1959).
    [CrossRef]
  18. S. Mizuta and K. Koumoto, Materials Science for Ceramics (University of Tokyo Press, Tokyo, 1996), p. 237.
  19. Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
    [CrossRef]
  20. N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001).
    [PubMed]

2013

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
[CrossRef]

2012

2011

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

2010

2007

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
[CrossRef]

2005

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

2004

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

2003

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

2001

N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001).
[PubMed]

2000

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

1998

H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).

1995

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

1994

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

1959

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem.9(2), 113–123 (1959).
[CrossRef]

Akchurin, M. S.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

Asai, S.

H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).

Bres, E.

N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001).
[PubMed]

Deloach, L. D.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Gainutdinov, R. V.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Harada, M.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Ikesue, A.

Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
[CrossRef]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Ishizuki, H.

Iwasaki, Y.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Kimura, T.

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Kurimura, S.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Kway, W. L.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Leroy, N.

N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001).
[PubMed]

Lotgering, F. K.

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem.9(2), 113–123 (1959).
[CrossRef]

Lupei, V.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

Morikawa, H.

H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).

Muramatsu, K.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Ozawa, S.

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Pavel, N.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

Payne, S. A.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Saikawa, J.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Sassa, Y.

H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).

Sato, Y.

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
[CrossRef]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Shirakava, A.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Shoji, I.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Smith, L. K.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Taira, T.

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
[CrossRef]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express20(18), 20002–20010 (2012).
[CrossRef] [PubMed]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
[CrossRef]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Tassano, J. B.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Ueda, K.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Yagi, H.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Yamamoto, I.

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Yanagitani, T.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Appl. Phys. Express

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

Appl. Phys. Lett.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003).
[CrossRef]

Crystallogr. Rep.

A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005).
[CrossRef]

Eur. Cell. Mater.

N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001).
[PubMed]

IEEE J. Quantum Electron.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007).
[CrossRef]

J. Am. Ceram. Soc.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

J. Inorg. Nucl. Chem.

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem.9(2), 113–123 (1959).
[CrossRef]

J. Mater. Res.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013).
[CrossRef]

Mater. Trans., JIM

H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007).
[CrossRef]

Opt. Mater. Express

Phys. Status Solidi C

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:.
[CrossRef]

Other

S. Mizuta and K. Koumoto, Materials Science for Ceramics (University of Tokyo Press, Tokyo, 1996), p. 237.

W. D. Kingerly, H. K. Brown, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1975), Chap. 5.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual diagram for the orientation control of anisotropic laser ceramics. Angle θ and φ are the angle between the control axis and the direction of easy magnetization axis and the precession angle of the micro-domain, respectively.

Fig. 2
Fig. 2

Conceptual chart for the improvement of the orientation distribution in anisotropic laser ceramics by preferential grain growth following the orientation control via slip casting under magnetic field.

Fig. 3
Fig. 3

Flowchart of the process for orientation control at fabrication of anisotropic laser ceramics (a), and the photograph of synthesized 2.0 at.% Nd:FAP ceramics (b).

Fig. 4
Fig. 4

X-ray diffraction patterns of raw powder of Nd:FAP (a), Nd:FAP ceramic sample-1 (b), and Nd:FAP ceramic sample-2 (c). Here diffraction angle means the angle between the incident direction and the diffracted direction of X-ray.

Fig. 5
Fig. 5

Probability of the orientation of easy magnetization axis in primary particles well aligned within the range of 0 ≤ θθ0 in slurry under thermal equilibrium.

Fig. 6
Fig. 6

Probability for the orientation of core particles with size of D in preferential grain growth of powder compact formed by the slip-casting under Bmin for mean particles.

Fig. 7
Fig. 7

X-ray diffraction pattern of raw powder of Nd:FAP (line) and the calculated peak intensity of the diffraction from the orientation controlled powder compact made of Nd:FAP (marker).

Fig. 8
Fig. 8

Ratio between branching of intensity in the X-ray diffraction from the transparent Nd:FAP ceramics after sintering. Dashed lines are the fitting to the exponential function. Ratios at θ = 0 are represented by the average value of 10 diffraction peaks.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d G k = S k dT+ μ k d N k V k γ g d( 1 r k )+ V k ij σ ij d ε ij P k dE M k dB,
M k = 1 μ V k χB,
U k = B d G k = 1 μ V k 0 B χBdB = V B 2 2μ ( χ e Δχ sin 2 θ k ),
ρ i ( hkl )= I i ( hkl ) / h , k , l I i ( h k l ) ,
f= ( hkl )S ρ s ( hkl ) ( hkl )S ρ r ( hkl ) 1 ( hkl )S ρ r ( hkl ) ,
f eq ( θ,ϕ,V,B )dΩ= N V exp[ U( θ,ϕ,V,B ) / kT ]dΩ exp[ U( θ,ϕ,V,B ) / kT ]d Ω ,
f eq ( θ,ϕ,V,B )dΩ N V 4π 2 B 2 + B min 2 B min 2 ( cosθ ) 2 B 2 / B min 2 dΩ,  
B min = 2μkT VΔχ
dG= k γ g V k d( 1 r k ) 4π 3 γ g k r k d r k
k r k 2 d r k =0
dG= 4π 3 γ g ( 1 r 1 r 2 ) r 1 d r 1 .
f eq ( θ,ϕ,V, B min m )dΩ N V 4π ( 2 D 3 D m 3 +1 ) ( cosθ ) 2 ( D/ D m ) 3 dΩ.  
θ( hkl )= Tan 1 cl a h 2 + k 2 hkδ ,
ρ s ( hkl ) f eq [ θ( hkl ),V,B ] I r ( hkl ) h , k , l f eq [ θ( hkl ),V,B ] I r ( h k l ) .
f= ( ( hkl )S f eq [ θ( hkl ),V,B ] I r ( hkl ) / h , k , l f eq [ θ( h k l ),V,B ] I r ( h k l ) ) ( hkl )S ρ r ( hkl ) 1 ( hkl )S ρ r ( hkl ) .
P eq [ 0θ θ 0 ]= 2π N 0 θ 0 f eq ( θ,ϕ )sinθdθ + 2π N π θ 0 π f eq ( θ,ϕ )sinθdθ =1 ( cos θ 0 ) 2 B 2 + B min 2 B min 2 .
ρ s ( hkl ) ρ r ( hkl ) ( cosθ ) 2 B 2 / B min 2 h , k , l I r ( h k l ) h , k , l ( cos θ ) 2 B 2 / B min 2 I r ( h k l ) exp[ B 2 B min 2 θ 2 ( hkl ) ].
T k = e ϕ U k θ + e θ 1 sinθ U k ϕ = V k Δχ 2μ B 2 sin2 θ k e ϕ ,
I k d 2 θ k d t 2 +6η V k d θ k dt = V k Δχ 2μ B 2 sin2 θ k + R k ( t ),
τ= 6μη Δχ B 2 .
exp[ U( θ,ϕ,V,B ) kT ]=exp( V B 2 2μkT χ e ) [ exp( sin 2 θ ) ] B 2 / B min 2 .
exp[ U( θ,ϕ,V,B ) kT ]exp( V B 2 2μkT χ e ) ( 1 sin 2 θ ) B 2 / B min 2 .
f eq ( θ,ϕ,V,B )dΩ N V ( 1 sin 2 θ ) B 2 / B min 2 dΩ 0 2π dϕ 0 π dθsinθ ( 1 sin 2 θ ) B 2 / B min 2 = N V ( cosθ ) 2 B 2 / B min 2 dΩ 2π 1 1 x 2 B 2 / B min 2 dx .

Metrics