Abstract

Fluorozirconate glasses, such as ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), have a high infrared transparency and large rare-earth solubility, which makes them an attractive platform for highly efficient and compact mid-IR waveguide lasers. We investigate the structural changes within the glass network induced by high repetition rate femtosecond laser pulses and reveal the origin of the observed decrease in refractive index by using Raman microscopy. The high repetition rate pulse train causes local melting followed by rapid quenching of the glass network. This results in breaking of bridging bonds between neighboring zirconium fluoride polyhedra and as the glass resolidifies, a larger fraction of single bridging fluorine bonds relative to double bridging links are formed in comparison to the pristine glass. The distance between adjacent zirconium cations is larger for single bridging than double bridging links and consequently an expansion of the glass network occurs. The rarified glass network can be related to the experimentally observed decrease in refractive index via the Lorentz-Lorenz equation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
    [CrossRef]
  2. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
    [CrossRef]
  3. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
    [CrossRef] [PubMed]
  4. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
    [CrossRef] [PubMed]
  5. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express17, 1963–1969 (2009).
    [CrossRef] [PubMed]
  6. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
    [CrossRef]
  7. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
    [CrossRef] [PubMed]
  8. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011).
    [CrossRef] [PubMed]
  9. J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
    [CrossRef]
  10. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
    [CrossRef]
  11. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2008).
    [CrossRef]
  12. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001).
    [CrossRef]
  13. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19, 2496–2504 (2002).
    [CrossRef]
  14. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
    [CrossRef]
  15. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
    [CrossRef]
  16. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
    [CrossRef]
  17. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
    [CrossRef]
  18. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29, 748–750 (2004).
    [CrossRef] [PubMed]
  19. L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
    [CrossRef]
  20. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids263–264, 1–28 (2000).
    [CrossRef]
  21. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids184, 9–20 (1995).
    [CrossRef]
  22. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
    [CrossRef]
  23. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012).
    [CrossRef] [PubMed]
  24. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, “Comparison of different theories for focusing through a plane interface,” J. Opt. Soc. Am. A14, 1482–1490 (1997).
    [CrossRef]
  25. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33, 2861–2863 (2008).
    [CrossRef] [PubMed]
  26. C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
    [CrossRef]
  27. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  28. O. F. Nielsen, Low-Frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison Between Different Low-Frequency Experimental Techniques. Collectivity of Vibrational Modes, 1st ed. (CRC Press, 2001), Chap. 15.
  29. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981).
    [CrossRef]
  30. Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983).
    [CrossRef]
  31. Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
    [CrossRef]
  32. C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
    [CrossRef]
  33. B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
    [CrossRef]
  34. E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
    [CrossRef]
  35. L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
    [CrossRef]
  36. E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
    [CrossRef]
  37. Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983).
    [CrossRef]
  38. R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
    [CrossRef]
  39. G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
    [CrossRef]
  40. R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983).
    [CrossRef]
  41. R. M. Almeida, “Vibrational spectroscopy of glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
    [CrossRef]
  42. C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
    [CrossRef]
  43. S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
    [CrossRef]
  44. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983).
    [CrossRef]
  45. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
    [CrossRef]
  46. J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
    [CrossRef]
  47. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32, 454–456 (2007).
    [CrossRef] [PubMed]
  48. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26, 93–95 (2001).
    [CrossRef]
  49. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011).
    [CrossRef] [PubMed]
  50. R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
    [CrossRef]

2012 (2)

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012).
[CrossRef] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

2011 (3)

2010 (1)

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

2009 (5)

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express17, 1963–1969 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

2008 (6)

2007 (1)

2006 (2)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

2005 (1)

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

2004 (1)

2003 (2)

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

2002 (1)

2001 (2)

2000 (4)

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids263–264, 1–28 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

1999 (1)

L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
[CrossRef]

1997 (1)

1996 (2)

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids184, 9–20 (1995).
[CrossRef]

1992 (1)

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

1991 (1)

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

1989 (1)

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

1988 (1)

R. M. Almeida, “Vibrational spectroscopy of glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

1987 (1)

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

1985 (2)

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

1983 (5)

R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983).
[CrossRef]

Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983).
[CrossRef]

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983).
[CrossRef]

Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983).
[CrossRef]

1981 (1)

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981).
[CrossRef]

Aasland, S.

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

Adam, J.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Aitchison, J.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Allington-Smith, J.

Almeida, R. M.

R. M. Almeida, “Vibrational spectroscopy of glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981).
[CrossRef]

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011).
[CrossRef] [PubMed]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

Anderson, T.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

Androz, G.

Angell, C.

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

Arai, A.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Armengol, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Austen Angell, C.

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

Barcones, B.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Bernier, M.

Bogdanov, V. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Booth, D. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Borrelli, N. F.

Boukenter, A.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Boulard, B.

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

Bouznik, V. M.

L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
[CrossRef]

Bovatsek, J.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

Brodeur, A.

Brow, R. K.

Carlie, N.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Chan, J.

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

Chan, J. W.

Chen, W.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Chen, W.-J.

Chin, S. L.

Coupé, R.

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

Dawes, J. M.

Dekker, P.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

Diez-Blanco, V.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Douay, M.

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

Duval, E.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Eaton, S. M.

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Einarsrud, M.-A.

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

Etienne, S.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Faucher, D.

Ferrari, M.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Fletcher, L. B.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

Foo, T.-C.

Fuerbach, A.

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012).
[CrossRef] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011).
[CrossRef] [PubMed]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids184, 9–20 (1995).
[CrossRef]

García, J.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

García, J. F.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Gerasimenko, A. V.

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

Gibbs, W. E. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Gosztola, D. J.

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

Grande, T.

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

Gross, S.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012).
[CrossRef] [PubMed]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011).
[CrossRef] [PubMed]

Guha, S.

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

Heidepriem, H. E.

Hemming, A.

Herman, P.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Herman, P. R.

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Hirao, K.

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

Ho, S.

Hô, N.

Hokmabadi, M. S.

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

Horisaka, T.

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983).
[CrossRef]

Huser, T.

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001).
[CrossRef]

Ignatieva, L. N.

L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
[CrossRef]

Iyer, R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Javorniczky, J. S.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Kar, A. K.

Kawamoto, Y.

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983).
[CrossRef]

Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983).
[CrossRef]

Kieffer, J.

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

Krishnan, P. N.

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

Krol, D. M.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2008).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001).
[CrossRef]

Kuan, K.

Lancaster, D. G.

Laval, J.

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

Léonard, A. J.

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

Li, J.

Li, Y.

Little, D. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

Lopez, C.

Louër, D.

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

Loza-Alvarez, P.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Lucas, J.

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

MacFarlane, D. R.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981).
[CrossRef]

Mai, C.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

Matthews, J. C. F.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26, 93–95 (2001).
[CrossRef]

McMillan, P. F.

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

Monro, T. M.

Moore, R. C.

Newman, P. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Ng, M. L.

Niay, P.

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

Nielsen, O. F.

O. F. Nielsen, Low-Frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison Between Different Low-Frequency Experimental Techniques. Collectivity of Vibrational Modes, 1st ed. (CRC Press, 2001), Chap. 15.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

O’Brien, J. L.

Osellame, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

Perez-Rodriguez, A.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Petit, L.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

Phifer, C. C.

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Polishchuk, S. a.

L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
[CrossRef]

Politi, A.

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Reichman, W. B.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Reis, S. T.

Richardson, K.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29, 748–750 (2004).
[CrossRef] [PubMed]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29, 748–750 (2004).
[CrossRef] [PubMed]

Risbud, S.

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001).
[CrossRef]

Rivero, C.

Rousset, J.

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Sakaguchi, F.

Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983).
[CrossRef]

Saliminia, A.

Schaffer, C.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

Schaffer, C. B.

Schulte, A.

Sergienko, V. I.

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Sheng, Y.

Siegel, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Smektala, F.

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

Soga, N.

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

Solis, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Sramek, R.

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

Streltsov, A. M.

Thomson, R. R.

Török, P.

Tran, D. C.

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

Troy, N.

Vallée, R.

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Varga, P.

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Vega, F.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Visser, T. D.

Voit, A. V.

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

Voit, E. I.

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

Walrafen, G. E.

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

Wiersma, S. H.

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

Witcher, J. J.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

Withford, M. J.

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012).
[CrossRef] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011).
[CrossRef] [PubMed]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

Xie, W.

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

Zhang, H.

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Zhang, L.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Zhang, W.

Zoubir, A.

Appl. Phys. A: Mater. Sci. Process. (2)

J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003).
[CrossRef]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983).
[CrossRef]

J. Appl. Phys. (3)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

J. Chem. Phys. (5)

G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983).
[CrossRef]

Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981).
[CrossRef]

C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991).
[CrossRef]

J. Non-Cryst. Solids (10)

J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989).
[CrossRef]

Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983).
[CrossRef]

R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000).
[CrossRef]

C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987).
[CrossRef]

B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992).
[CrossRef]

R. M. Almeida, “Vibrational spectroscopy of glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids263–264, 1–28 (2000).
[CrossRef]

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids184, 9–20 (1995).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996).
[CrossRef]

J. Raman Spectrosc. (1)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

J. Struct. Chem. (2)

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000).
[CrossRef]

E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000).
[CrossRef]

Lab Chip (1)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Rev. Inorg. Chem. (1)

L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999).
[CrossRef]

Other (1)

O. F. Nielsen, Low-Frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison Between Different Low-Frequency Experimental Techniques. Collectivity of Vibrational Modes, 1st ed. (CRC Press, 2001), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the BaZr2F10 glass based on Zr2F13 dimers (ZrF7 and ZrF8 polyhedra linked by a fluorine double bridges) forming a ring-like network (illustration derived from [32]).

Fig. 2
Fig. 2

(a) Optical microscope image and corresponding refractive index profiles (RIP) of the analyzed modification with an average refractive index change of Δn = (−1.0 ± 0.2) × 10−3 in its center. The black and red cross in the RIP indicate the approximate location of the collected spectra shown below. (b) Raman spectra of unmodified and modified ZBLAN plotted on top of each other, illustrating the only very subtle changes in Raman response between modified and unmodified ZBLAN. (c) Raman spectra of unmodified ZBLAN. The inset highlights an additional weak band at ≈ 335 cm−1 arising from impurities. For comparison, the deconvolved spectrum is shown for a curve fit using 5 and 6 bands. (d) Spectral decomposition into 6 bands of the Raman spectrum illustrated in (c).

Fig. 3
Fig. 3

Spatially resolved Raman data of a laser induced modification from Fig. 2a. Each row corresponds to one Raman peak, with column one being its integrated intensity (area underneath the curve), column two shows the change in FWHM and column three illustrates the shift in center frequency. The data is the relative percentage change normalized against the bulk glass.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I R ( ν ) = ( 1 e h c 0 ν / k B T ) I obs ( ν ) ,
I Fit ( ν ) = n = 1 6 A n ( μ n w n ( ν ν n ) 2 + w n 2 + ( 1 μ n ) e ln ( 2 ) ( ν ν n ) 2 w n 2 ) .
Area = A n ( μ n π w n + ( 1 μ n ) w n π ln ( 2 ) ) .

Metrics