Abstract

We carefully examined the fluorescence properties of Yb-doped fibers before and after pump-induced photodarkening (PD) and found a significant reduction of Yb3+ fluorescence intensity and lifetime due to the degradation process, obviously correlated with the measured PD loss. To explain these results, a non-radiative energy transfer from excited Yb3+ ions to the atomic defects (color centers) in close vicinity of the Yb3+ ions is suggested and discussed quantitatively as a function of PD loss generated in fibers with different Yb concentrations, by various pump powers or at different photodarkening states. All modifications of fluorescence properties proved to be reversed by thermal bleaching of the PD-induced color centers.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Evidence of Tm impact in low-photodarkening Yb-doped fibers

Sylvia Jetschke, Sonja Unger, Anka Schwuchow, Martin Leich, Julia Fiebrandt, Matthias Jäger, and Johannes Kirchhof
Opt. Express 21(6) 7590-7598 (2013)

Efficient Yb laser fibers with low photodarkening by optimization of the core composition

Sylvia Jetschke, Sonja Unger, Anka Schwuchow, Martin Leich, and Johannes Kirchhof
Opt. Express 16(20) 15540-15545 (2008)

Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power

Sylvia Jetschke, Sonja Unger, Ulrich Röpke, and Johannes Kirchhof
Opt. Express 15(22) 14838-14843 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
    [Crossref]
  2. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  3. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  4. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [Crossref] [PubMed]
  5. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [Crossref] [PubMed]
  6. A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
    [Crossref]
  7. J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
    [Crossref]
  8. J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
    [Crossref]
  9. M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
    [Crossref]
  10. A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
    [Crossref]
  11. H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
    [Crossref]
  12. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
    [Crossref] [PubMed]
  13. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]
  14. A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof (Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany) are preparing a manuscript to be called “Advanced absorption and fluorescence measurements to characterize photodarkening and related properties of Yb fibers”.
  15. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [Crossref] [PubMed]
  16. M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers,” J. Opt. Soc. Am. B 23(2), 195–202 (2006).
    [Crossref]

2012 (2)

2011 (3)

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[Crossref] [PubMed]

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

2010 (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

2009 (2)

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

2006 (2)

1997 (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Aleshkina, S. S.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Barmenkov, Y. O.

A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
[Crossref]

Basu, C.

Boyland, A. J.

Bubnov, M. M.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Clarkson, W. A.

Crowe, I.

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

Dianov, E. M.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Durkin, M. K.

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

Engholm, M.

Gebavi, H.

Ghiringhelli, F.

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

Girard, S.

Gur’yanov, A. N.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Guzman Chávez, A. D.

A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Hoffman, H. J.

Ilichev, N. N.

A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
[Crossref]

Jetschke, S.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

Kirchhof, J.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

Kiryanov, A. V.

A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
[Crossref]

Koponen, J. J.

Laroche, M.

Leich, M.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

Likhachev, M. E.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Mattsson, K. E.

Monteville, A.

Nilsson, J.

Norin, L.

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Payne, D.

Reichel, V.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

Robin, T.

Röpke, U.

Rybaltovsky, A. A.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Sahu, J. K.

Scheffel, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

Söderlund, M. J.

Sones, C.

Taccheo, S.

Tammela, S. K. T.

Tregoat, D.

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Umnikov, A. A.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Unger, S.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

Yashkov, M. V.

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Yoo, S.

Zervas, M. N.

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. D. Guzman Chávez, A. V. Kiryanov, Y. O. Barmenkov, and N. N. Ilichev, “Reversible photodarkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007).
[Crossref]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (3)

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S, 71950S-15 (2009).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers,” Proc. SPIE 7598, 75980B, 75980B-11 (2010).
[Crossref]

M. N. Zervas, F. Ghiringhelli, M. K. Durkin, and I. Crowe, “Distribution of photodarkening-induced loss in Yb-doped fiber amplifiers,” Proc. SPIE 7914, 79140L, 79140L-8 (2011).
[Crossref]

Quantum Electron. (1)

A. A. Rybaltovsky, S. S. Aleshkina, M. E. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011).
[Crossref]

Other (1)

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof (Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany) are preparing a manuscript to be called “Advanced absorption and fluorescence measurements to characterize photodarkening and related properties of Yb fibers”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) PD evolution in the fibers of series I with Yb content ≥ 2000 mol-ppm, (b) NIR fluorescence decay measured on the fibers of series II after preparation by the PD process up to different PD loss values (pumping of pristine fiber pieces was interrupted after different times), compared to the decay curve of a pristine fiber.

Fig. 2
Fig. 2

Fibers with variation of Yb content (series I): (a) measured NIR Yb3+ fluorescence lifetime before and after PD, (b) NIR fluorescence intensity after PD related to the value before PD for each fiber sample, measured (open squares) and calculated from measured lifetimes (full squares).

Fig. 3
Fig. 3

(a) Measured fluorescence properties (normalized to values before PD) vs. PD loss for series II, (b) measured and calculated NIR fluorescence intensity (normalized to values before PD) vs. PD loss for series III. The solid lines represent linear fits to the lifetime values.

Fig. 4
Fig. 4

Efficiency of non-radiative energy transfer vs. measured PD loss.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I f (t)/ I f (0)=exp(t/τ)
τ PD 1 = τ 0 1 + R nr .
I PD / I 0 = n 2 (PD)/ n 2 (0)= 1+c/ τ 0 1+c/ τ PD withc= Ahυ P exc ( σ abs + σ em )
η=1 τ PD / τ 0 .

Metrics