Abstract

We present here a simple two step infiltration and calcination involved technique to obtain high optical quality inverse opal structures of SiO2, SnO2 and SiO2-SnO2 binary oxide inverse opal structures. Scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction measurements are carried out to investigate the structural features of the opals. High resolution TEM measurements reveal the uniform distribution of SnO2 nanocrystals throughout the inverse opal matrix. Optical properties along with theoretical fitting reveal the interesting photonic band gap features of the opals with high optical quality as well as the high porosity of these structures. The well-known multifunctional properties of SnO2 like photorefractivity, low phonon energy for luminescent materials and gas sensing features show the advantages of these inverse opal structures can be favorable in the development of photonics and sensors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  4. C. López, “Materials aspects of photonic crystals,” Adv. Mater.15(20), 1679–1704 (2003).
    [CrossRef]
  5. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
    [CrossRef]
  6. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
    [CrossRef]
  7. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect,” Opt. Lett.30(17), 2254–2256 (2005).
    [CrossRef] [PubMed]
  8. S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
    [CrossRef] [PubMed]
  9. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  10. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
    [CrossRef]
  11. G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
    [CrossRef]
  12. S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
    [CrossRef]
  13. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  14. E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
    [CrossRef]
  15. S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
    [CrossRef] [PubMed]
  16. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
    [CrossRef] [PubMed]
  17. F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
    [CrossRef]
  18. Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
    [CrossRef]
  19. J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
    [CrossRef]
  20. D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
    [CrossRef]
  21. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
    [CrossRef]
  22. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  23. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
    [CrossRef]
  24. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
    [CrossRef]
  25. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
    [CrossRef] [PubMed]
  26. K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
    [CrossRef]
  27. S. Guddala, S. Bhaktha B.N., C. Armellini, A. Chiappini, V. Tran, S. Turrell, G. Righini, M. Ferrari, and D. Narayana Rao, “Low-loss erbium activated silica-tin oxide planar waveguides,” in International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper M2B.4. http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2012-M2B.4 .
  28. B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
    [CrossRef]
  29. A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir17(12), 3579–3585 (2001).
    [CrossRef]
  30. S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
    [CrossRef] [PubMed]
  31. İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996).
    [CrossRef]
  32. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
    [CrossRef]
  33. R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
    [CrossRef]
  34. S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
    [CrossRef]
  35. M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
    [CrossRef]
  36. N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
    [CrossRef] [PubMed]
  37. A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
    [CrossRef]

2012 (3)

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
[CrossRef]

2011 (5)

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

2009 (4)

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

2008 (4)

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

2006 (1)

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

2005 (1)

2004 (2)

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

2003 (4)

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
[CrossRef] [PubMed]

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

C. López, “Materials aspects of photonic crystals,” Adv. Mater.15(20), 1679–1704 (2003).
[CrossRef]

2002 (1)

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

2001 (1)

A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir17(12), 3579–3585 (2001).
[CrossRef]

2000 (2)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
[CrossRef]

1997 (1)

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

1996 (1)

İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Ahl, S.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Alexeev, V. L.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Arif, R. A.

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Asher, S. A.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Baratto, C.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Beclin, F.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Bhaktha, B. N. S.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Blanco, A.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Bouazaoui, M.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Braun, P. V.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

Brovelli, S.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Burkert, K.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Calestani, G.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Campbell, M.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Cao, H.

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Capoen, B.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Castillo-Martínez, E.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chang, R. P. H.

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Chawla, V.

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

Chen, G.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

Chen, T. T.

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

Chen, Y. F.

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

Chiappini, A.

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

Chiodini, N.

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
[CrossRef] [PubMed]

Chomski, E.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Coalson, R. D.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

Denning, R. G.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Dionigi, C.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Ee, Y. K.

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Ehrfeld, W.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Faglia, G.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Feiertag, G.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Ferrari, M.

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Ferroni, M.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Finegold, D. N.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Freimuth, H.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Froufe-Pérez, L. S.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

Galisteo-López, J. F.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

García-Santamaría, F.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

Gilchrist, J. F.

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Goponenko, A. V.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Grabtchak, S.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Graugnard, E.

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

Guddala, S.

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Han, Y. J.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Harrison, M. T.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Hodson, T.

Hwang, D. K.

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Ibisate, M.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Imhof, A.

A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir17(12), 3579–3585 (2001).
[CrossRef]

Inanç Tarhan, I.

İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996).
[CrossRef]

John, S.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Jonas, U.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Kamanoor, S. A.

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

Kesavamoorthy, R.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

Kinowski, C.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Kiriakidis, G.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Knoll, W.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Koenig, W.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Kolle, H.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Koo, W. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Kreiter, M.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Kuhl, J.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Kumnorkaew, P.

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Lauria, A.

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Lednev, I. K.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Lehr, H.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Leonard, S. W.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Li, Q.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Li, X. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Lin, H. Y.

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

Lopez, C.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

López, C.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

C. López, “Materials aspects of photonic crystals,” Adv. Mater.15(20), 1679–1704 (2003).
[CrossRef]

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

Lorang, D.

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

Lorenzi, R.

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Lu, M. L.

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

Maldovan, M.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Meinardi, F.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Meseguer, F.

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Miguez, H.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Míguez, H.

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

Mochenova, N.

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

Mondia, J. P.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Monguzzi, A.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Mozzati, M. C.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Narayana Rao, D.

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
[CrossRef]

Ndi, F. C.

Neumann, T.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Noh, H.

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
[CrossRef]

Ozin, G. A.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Palacios-Lidón, E.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Paleari, A.

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
[CrossRef] [PubMed]

Pedersen, T.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Prather, D. W.

Rinne, S. A.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

Robbe-Cristini, O.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Roussel, P.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Sapienza, R.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Sberveglieri, G.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Schmidt, M.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

Shadak Alee, K.

K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
[CrossRef]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Sharma, A. C.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Sharp, D. N.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Sigalas, M. M.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

So, F.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Song, R.

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Soukoulis, C. M.

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Spinolo, G.

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
[CrossRef] [PubMed]

Sriram, G.

K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
[CrossRef]

Summers, C. J.

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

Sutti, A.

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Tansu, N.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Thomas, E. L.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

Tikhonov, A.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

Toader, O.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Tong, H.

Toulouse, J.

Turberfield, A. J.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Turrell, S.

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Ullal, C. K.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

van Driel, H. M.

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
[CrossRef]

Vodopivec, B.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Wang, J.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

Watson, G.

İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996).
[CrossRef]

Weissman, J. M.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

Wilcox, C. S.

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, S.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

Yao, N.

Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
[CrossRef]

Youn, W.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Zhu, P.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Adv. Mater. (3)

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011).
[CrossRef] [PubMed]

Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999).
[CrossRef]

C. López, “Materials aspects of photonic crystals,” Adv. Mater.15(20), 1679–1704 (2003).
[CrossRef]

Appl. Phys. Lett. (6)

M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011).
[CrossRef]

D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004).
[CrossRef]

G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997).
[CrossRef]

E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp. (1)

F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002).
[CrossRef]

IEEE Photon. J. (1)

X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012).
[CrossRef]

J. Mater. Chem. (1)

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008).
[CrossRef]

J. Non-Cryst. Solids (1)

R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011).
[CrossRef]

J. Phys. Chem. C (1)

B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009).
[CrossRef]

Langmuir (2)

A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir17(12), 3579–3585 (2001).
[CrossRef]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Nature (2)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012).
[CrossRef]

Phys. Rev. B (3)

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009).
[CrossRef]

İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996).
[CrossRef]

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008).
[CrossRef]

Other (2)

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

S. Guddala, S. Bhaktha B.N., C. Armellini, A. Chiappini, V. Tran, S. Turrell, G. Righini, M. Ferrari, and D. Narayana Rao, “Low-loss erbium activated silica-tin oxide planar waveguides,” in International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper M2B.4. http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2012-M2B.4 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Top view and (b) cross-sectional view of bare PS opal. (c) Top view and (d) cross-sectional view of ISO. The inset of Fig. 1(c) shows the high magnification of ISO with air spheres and triangular lattice holes (black arrow) which are resultant of former contacts between the spheres.

Fig. 2
Fig. 2

SEM image shows the (111) facet of (a) ISnO and (b) ISSnO. The white circled regions in (b) correspond to mesoporous cavities observed in case of ISSnO, the inset of Fig. 2(b) also shows the high magnification image of the mesoporous cavities.

Fig. 3
Fig. 3

(a) TEM image of ISnO with SAED pattern in the inset; (b) HRTEM image indicates the nanocrystals of SnO2 with ~4 (± 1) nm dimension; (c) TEM image of ISSnO with SAED pattern indicates the amorphous phase of the matrix; (d) XRD spectra of ISO, ISnO and ISSnO.

Fig. 4
Fig. 4

(a) Optical transmittance of bare PS opal and inverse opal structures. (b) Reflectance spectra of inverse opal structures at 5° angle of incidence to the normal of (111) plane. (c) & (d) show an angle resolved reflectance of ISO and ISnO, where the behavior of (111) and ( 1 ¯ 11) planes along with its theoretical fit (thick line) for Eq. (1) and Eq. (3) respectively.

Tables (1)

Tables Icon

Table 1 Optical and structural parameters of bare PS and inverse opal structures

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=2×0.816×D× ( n eff 2 Si n 2 θ) 1/2
n eff 2 =(1f)× n air 2 +f× n medium 2
λ hkl =2 d hkl n eff [1 sin 2 (βarcsin(sinθ/ n eff ))] 1/2

Metrics