Abstract

Fluoroindate glasses are attractive materials for the fabrication of mid-infrared transmitting fibers with extended spectral range. Preparation of fluoroindate glasses under different melting conditions and preform fabrication using the billet extrusion technique were investigated in this study. Experimental results showed that the fluorination of the raw materials using ammonium bifluoride reduced OH content and oxide impurities, and enhanced the crystallization stability of the glasses. In addition, a shift of the IR absorption edge to longer wavelength was observed by using ammonium bifluoride. Casting and extrusion methods were compared for application to preform fabrication. In this work, the fiber with the lowest loss (~2 dB/m at 1.55 μm) was obtained using preform extrusion at 322 °C. The significantly reduced loss of the fiber made from the extruded preform compared to the fiber made using a cast preform is attributed to the suppression of scattering centers and the better surface quality of extruded rods compared with the cast rod.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Almeida, “Fluoride glasses,” in Handbook on the Physics and Chemistry of Rare Earths, A. G. Karl, Jr. and E. LeRoy, eds. (Elsevier, 1991), pp. 287–346.
  2. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
    [CrossRef]
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004).
    [CrossRef]
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  5. P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
    [CrossRef]
  6. J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989).
    [CrossRef]
  7. D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
    [CrossRef]
  8. L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
    [CrossRef] [PubMed]
  9. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
    [CrossRef]
  10. N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
    [CrossRef]
  11. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
    [CrossRef]
  12. K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
    [CrossRef]
  13. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U.S. Patent No. 5,774,620 (dated Jun. 30, 1998).
  14. Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
    [CrossRef]
  15. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
    [CrossRef]
  16. G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
    [CrossRef]
  17. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow druing extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
    [CrossRef]
  18. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
    [CrossRef]
  19. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
    [CrossRef]
  20. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
    [CrossRef] [PubMed]
  21. H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
    [CrossRef] [PubMed]
  22. A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
    [CrossRef]
  23. S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
    [CrossRef]
  24. S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
    [CrossRef]
  25. D. C. Tran and C. Fisher, “SF6 Process for dehydration of fluoride glasses,” U.S. Patent No. 4,539,032 (dated Sep. 3, 1985).
  26. H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
    [CrossRef]
  27. P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
    [CrossRef]
  28. A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
    [CrossRef]
  29. Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
    [CrossRef]
  30. P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
    [CrossRef]
  31. M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
    [CrossRef]
  32. B. Bendow, “Transparency of bulk halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic Press, 1991), pp. 85–137.
  33. M. G. Drexhage, “Heavy metal fluoride glasses,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic Press, 1985), Vol. 26: Glass IV, pp. 228–229.
  34. H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983).
    [CrossRef]
  35. N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
    [CrossRef]
  36. S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991).
    [CrossRef]
  37. K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
    [CrossRef]
  38. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
    [CrossRef]
  39. International Organisation for Standardisation, “Surface Roughness - Terminology - Part 1: Surface and Its Parameters,” ISO 4287–1 (1984).

2012 (1)

2010 (2)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

2009 (2)

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

2008 (1)

2007 (2)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

2004 (1)

2003 (1)

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

2002 (1)

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

2001 (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

2000 (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

1999 (2)

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
[CrossRef]

1997 (1)

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

1994 (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

1993 (1)

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

1992 (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

1991 (3)

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991).
[CrossRef]

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

1989 (1)

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989).
[CrossRef]

1988 (1)

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

1986 (1)

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

1984 (2)

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

1983 (3)

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983).
[CrossRef]

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

1981 (1)

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

1971 (1)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

Adam, J. L.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Aegerter, M. A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004).
[CrossRef]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

Aoki, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Bailey, R.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

Baniel, P.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Bansal, N. P.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

Beales, K. J.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

Bendow, B.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Boulard, B.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Boulos, M.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Bruce, A. J.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

Carter, S. F.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

Chung, K. H.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Davey, S. T.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

de Araujo, C. B.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

de Araujo, M. T.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

de Araújo, C. B.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

de Araújo, L. E. E.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Doremus, R. H.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

Drexhage, M. G.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Ebendorff-Heidepriem, H.

Elyamani, A.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Florez, A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Foo, T. C.

France, P. W.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

Fujiura, K.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

Gao, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Gboji, E.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Gerndt, C.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Gomes, A. S. L.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Gouveia, E. A.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

Hemming, A.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

Henry, P.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

Hodelin, J.

Ishikawa, E.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Itoh, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Jestin, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Kanamori, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

Klein, P. H.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Kobayashi, K.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Lancaster, D. G.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

Lenz, G.

Li, Y.

Lin, A.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

Lucas, J.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Maciel, G. S.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

Mailhot, A. M.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Mair, R. H.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

Matsumoto, Y.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Matsuoka, Y.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

McNamara, P.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

Messaddeq, Y.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Mitachi, S.

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Monro, T. M.

Moore, M. W.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

Moore, R. C.

Moynihan, C. T.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Nishida, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

Ohishi, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Okada, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Oliveira, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

Parker, J. M.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

Payne, D. N.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
[CrossRef]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Poulain, M.

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989).
[CrossRef]

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Pureza, P. C.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Rakov, N.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

Rault, G.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Reau, J. M.

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989).
[CrossRef]

Riman, R. E.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Roberts, W. I.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Roeder, E.

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

Saad, M.

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

Sakamoto, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Sauze, A. L.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Schneider, H. W.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Schoberth, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004).
[CrossRef]

Shirakawa, A.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Slusher, R. E.

Smektala, F.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Staudt, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Sudo, S.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Szebesta, D.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

Takahashi, S.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Tawarayama, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Taylor, E. R.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
[CrossRef]

Terunuma, Y.

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Tick, P. A.

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991).
[CrossRef]

Toratani, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Toulouse, J.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

Uhlmann, D. R.

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983).
[CrossRef]

Wang, J. S.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

West, Y. D.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
[CrossRef]

Williams, J. R.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

Yamanaka, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Yanagita, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

Yinnon, H.

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983).
[CrossRef]

Zhang, A.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

Zhang, W.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Electron. Lett. (3)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984).
[CrossRef]

J. Am. Ceram. Soc. (1)

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983).
[CrossRef]

J. Appl. Phys. (2)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000).
[CrossRef]

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002).
[CrossRef]

J. Fluor. Chem. (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

J. Lightwave Technol. (1)

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

J. Mater. Res. (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

J. Mater. Sci. (1)

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

J. Non-Cryst. Solids (9)

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999).
[CrossRef]

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983).
[CrossRef]

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993).
[CrossRef]

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999).
[CrossRef]

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. Vac. Sci. Technol. B (1)

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991).
[CrossRef]

Mater. Chem. Phys. (1)

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989).
[CrossRef]

Mater. Res. Bull. (1)

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981).
[CrossRef]

Mater. Sci. Forum (2)

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

Other (6)

R. M. Almeida, “Fluoride glasses,” in Handbook on the Physics and Chemistry of Rare Earths, A. G. Karl, Jr. and E. LeRoy, eds. (Elsevier, 1991), pp. 287–346.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U.S. Patent No. 5,774,620 (dated Jun. 30, 1998).

D. C. Tran and C. Fisher, “SF6 Process for dehydration of fluoride glasses,” U.S. Patent No. 4,539,032 (dated Sep. 3, 1985).

B. Bendow, “Transparency of bulk halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic Press, 1991), pp. 85–137.

M. G. Drexhage, “Heavy metal fluoride glasses,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic Press, 1985), Vol. 26: Glass IV, pp. 228–229.

International Organisation for Standardisation, “Surface Roughness - Terminology - Part 1: Surface and Its Parameters,” ISO 4287–1 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fluoroindate glass in the form of: (Left) Cast billets. (Top) Cast rod. (Centre) Preforms cast from cast billets.

Fig. 2
Fig. 2

Absorption coefficient for the glass samples prepared under the three different fabrication conditions (a) 2.75-6.00 μm; (b) 5.00-8.75μm.

Fig. 3
Fig. 3

DSC curves for the glass samples prepared under the three different fabrication conditions.

Fig. 4
Fig. 4

Glass surface images: (a) before annealing at 330 °C less than 8 hours; (b) the edge of the glass after annealing at 330 °C less than 8 hours; (c) before annealing at 322 °C for 24 hours; (d) after annealing at 322 °C for 24 hours.

Fig. 5
Fig. 5

AFM morphology of preform surface (a) before etching; (b) surface without white precipitate after etching by 15 wt% HCl(aq). Insets are optical microscope images of the preform surfaces before and after etching.

Fig. 6
Fig. 6

(a) SEM secondary electron image and (b) EDS analysis of the white precipitate formed after 15 wt% HCl(aq) etch.

Fig. 7
Fig. 7

Loss measurements at 1550 nm for fibers made using different conditions. Linear fits of the data are also shown in the figure.

Fig. 8
Fig. 8

Microscope image of the fiber drawn from the preform extruded at 322 °C.

Tables (3)

Tables Icon

Table 1 Glass blocks melting conditions

Tables Icon

Table 2 Electron probe microanalysis of sample C (glass block)

Tables Icon

Table 3 Glass rod / preform preparation conditions and results of the fiber loss

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S a = 1 MN k=0 M1 l=0 N1 |z (x k , y l ) |
S a = 1 MN k=0 M1 l=0 N1 [ z(x k , y l ) ] 2

Metrics