Abstract

Depressed tubular cladding waveguides have been produced in Nd:GGG crystals by using multiple inscription with femtosecond (fs) laser pulses. The guiding cores are located inside the tubular regions with cross-section diameters of 90-150 μm, which are surrounded by fs-laser induced low-refractive-index tracks. At room temperature continuous wave (cw) laser oscillations at wavelength of ~1063 nm have been realized through the optical pump at 808 nm. The slope efficiency of the cladding waveguide lasers is as high as 44.4% and the maximum output power at 1063 nm is 209 mW, which shows superior laser performance to the Type II stress induced Nd:GGG waveguides.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
    [CrossRef]
  4. M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
    [CrossRef]
  5. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  6. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
    [CrossRef] [PubMed]
  7. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
    [CrossRef] [PubMed]
  8. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  9. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  10. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  11. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  12. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
    [CrossRef]
  13. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
    [CrossRef]
  14. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  15. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
    [CrossRef] [PubMed]
  16. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
    [CrossRef]
  17. Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
    [CrossRef]
  18. Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
    [CrossRef]
  19. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
    [CrossRef]
  20. Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
    [CrossRef]
  21. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
    [CrossRef]
  22. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett.17(1), 52–54 (1992).
    [CrossRef] [PubMed]
  23. Y. Yao, N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, “Proton beam writing of Nd:GGG crystals as new waveguide laser sources,” Opt. Lett.36(21), 4173–4175 (2011).
    [CrossRef] [PubMed]
  24. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
    [CrossRef] [PubMed]
  25. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
    [CrossRef]

2012

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
[CrossRef] [PubMed]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
[CrossRef] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

2011

2010

2009

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

2008

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

2007

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

2006

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

2002

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

1996

1992

Ams, M.

Beecher, S.

Beecher, S. J.

Benayas, A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Bennion, I.

Bettiol, A. A.

Brown, G.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Calmano, T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Chandler, P. J.

Chen, F.

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
[CrossRef]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Y. Yao, N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, “Proton beam writing of Nd:GGG crystals as new waveguide laser sources,” Opt. Lett.36(21), 4173–4175 (2011).
[CrossRef] [PubMed]

C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Cheng, X.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Dong, C.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Dong, N.

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
[CrossRef]

Y. Yao, N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, “Proton beam writing of Nd:GGG crystals as new waveguide laser sources,” Opt. Lett.36(21), 4173–4175 (2011).
[CrossRef] [PubMed]

Dong, N. N.

Ebendorff-Heidepriem, H.

Field, S. J.

Fredrich-Thornton, S. T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Gross, S.

Hanna, D. C.

Hirao, K.

Huber, G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Jaque, D.

Jia, Y.

Jia, Z.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Jiang, M.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Kar, A. K.

Kuan, K.

Lancaster, D. G.

Large, A. C.

Liu, H.

Lu, Q.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Lu, Q. M.

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Mary, R.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Mezentsev, V.

Miura, K.

Monro, T. M.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Ohara, S.

Okhrimchuk, A.

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Paschke, A. G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Petermann, K.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Piper, J.

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Ren, Y.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Rodenas, A.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Ródenas, A.

Romero, C.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Shepherd, D. P.

Shestakov, A.

Siebenmorgen, J.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Sugimoto, N.

Tan, Y.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Tao, X.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Thomson, R. R.

Torchia, G. A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Townsend, P. D.

Tropper, A. C.

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Vanga, S. K.

Vázquez de Aldana, J. R.

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Withford, M.

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Withford, M. J.

Xu, F.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Yagi, H.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Yang, J.

Yao, Y.

Zhang, C.

Zhang, L.

Zhang, W.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Appl. Phys. B

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Appl. Phys. Express

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Appl. Phys. Lett.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

J. Cryst. Growth

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth292(2), 386–390 (2006).
[CrossRef]

Laser Photonics Rev.

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi (RRL)

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6(7), 306–308 (2012).
[CrossRef]

Prog. Quantum Electron.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Rev. Sci. Instrum.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microscope images of the fs-laser inscribed Nd:GGG crystals of the depressed tubular cladding waveguides with diameters of (a) 150, (b) 120 and (c) 90 μm.

Fig. 2
Fig. 2

Near field intensity distributions of the depressed cladding waveguides with diameters of 150, 120 and 90 μm at 632.8 nm, respectively: (a), (b) and (c) for the TE modes and (d), (e) and (f) for the TM modes. The dashed lines indicate the spatial locations of the fs-laser induced damage tracks.

Fig. 3
Fig. 3

Typical laser emission spectrum from the fs-laser inscribed Nd:GGG depressed cladding waveguides. Peak position stays at 1063 nm and the FWHM is 0.6 nm.

Fig. 4
Fig. 4

Waveguide laser modal distributions at 1063 nm of the depressed cladding waveguides with diameters of 150 μm, 120 μm and 90 μm under 808 nm optical pump: (a), (b) and (c) for the TE polarization and (d), (e) and (f) for the TM polarization, respectively.

Fig. 5
Fig. 5

Cw waveguide (TM mode) laser output power at 1063 nm as a function of the absorbed power at 808 nm. The green, red and blue lines stand for the data of the depressed cladding waveguides with diameters of 150 μm, 120 μm and 90 μm, respectively.

Metrics