Abstract

The phosphor CaTiO3:Pr3+ was synthesized via a solid-state reaction in combination with a subsequent annealing under flowing NH3. Comparatively large off-center displacements of Ti in the TiO6 octahedra were confirmed for as-synthesized CaTiO3:Pr3 by XANES. Raman spectroscopy showed that the local crystal structure becomes highly symmetric when the powders are ammonolyzed at 400 °C. Rietveld refinement of powder X-ray diffraction data revealed that the samples ammonolyzed at 400 °C have the smallest lattice strain and at the same time the largest average Ti-O-Ti angles were obtained. The samples ammonolyzed at 400 °C also showed the smallest mass loss during the thermal re-oxidation in thermogravimetric analysis (TGA). Enhanced photolumincescence brightness and an improved decay curve as well as the highest reflectance were obtained for the samples ammonolyzed at 400 °C. The improved photoluminescence and afterglow by NH3 treatment are explained as a result of the reduced concentration of oxygen excesses with simultaneous relaxation of the lattice strain.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
    [CrossRef]
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  3. B. M. J. Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater. Chem. Phys.16(3–4), 283–299 (1987).
    [CrossRef]
  4. Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
    [CrossRef]
  5. X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
    [CrossRef]
  6. A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
    [CrossRef]
  7. P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
    [CrossRef]
  8. D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
    [CrossRef]
  9. E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
    [CrossRef]
  10. W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
    [CrossRef]
  11. P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
    [CrossRef]
  12. X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
    [CrossRef]
  13. W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
    [CrossRef]
  14. X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
    [CrossRef]
  15. S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
    [CrossRef]
  16. J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
    [CrossRef]
  17. T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009).
    [CrossRef]
  18. T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007).
    [CrossRef]
  19. E. H. Otal, A. E. Maegli, N. Vogel-Schauble, B. Walfort, H. Hagemann, S. Yoon, A. Zeller, and A. Weidenkaff, “The influence of defects formed by Ca excess and thermal post-treatments on the persistent luminescence of CaTiO3:Pr3+,” Opt. Mater. Express2(4), 405–412 (2012).
    [CrossRef]
  20. S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
    [CrossRef]
  21. M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
    [CrossRef] [PubMed]
  22. A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
    [CrossRef]
  23. A. Fuertes, “Synthesis and properties of functional oxynitrides—from photocatalysts to CMR materials,” Dalton Trans.39(26), 5942–5948 (2010).
    [CrossRef] [PubMed]
  24. J. Rodríguez-Carvajal, “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B192(1–2), 55–69 (1993).
    [CrossRef]
  25. A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944).
    [CrossRef]
  26. P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
    [CrossRef]
  27. T. Ressler, “WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.5(2), 118–122 (1998).
    [CrossRef] [PubMed]
  28. J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967).
    [CrossRef]
  29. H. Modrow, “Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view,” Appl. Spectrosc. Rev.39(2), 183–290 (2004).
    [CrossRef]
  30. T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
    [CrossRef]
  31. V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
    [CrossRef]
  32. R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
    [CrossRef]
  33. A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
    [CrossRef] [PubMed]
  34. T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
    [CrossRef]
  35. H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
    [CrossRef]
  36. V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
    [CrossRef]
  37. U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982).
    [CrossRef]
  38. M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
    [CrossRef] [PubMed]
  39. A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
    [CrossRef]
  40. E. A. Stern, “Character of order-disorder and displacive components in barium titanate,” Phys. Rev. Lett.93(3), 037601 (2004).
    [CrossRef] [PubMed]
  41. P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
    [CrossRef]
  42. K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
    [CrossRef]
  43. V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009).
    [CrossRef]
  44. A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
    [CrossRef]
  45. N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992).
    [CrossRef]
  46. R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
    [CrossRef]
  47. X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
    [CrossRef]
  48. X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
    [CrossRef]

2012 (1)

2011 (4)

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

2010 (3)

A. Fuertes, “Synthesis and properties of functional oxynitrides—from photocatalysts to CMR materials,” Dalton Trans.39(26), 5942–5948 (2010).
[CrossRef] [PubMed]

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

2009 (5)

V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009).
[CrossRef]

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009).
[CrossRef]

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

2008 (2)

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

2007 (6)

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

2006 (3)

D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
[CrossRef]

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

2005 (2)

T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

2004 (3)

E. A. Stern, “Character of order-disorder and displacive components in barium titanate,” Phys. Rev. Lett.93(3), 037601 (2004).
[CrossRef] [PubMed]

H. Modrow, “Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view,” Appl. Spectrosc. Rev.39(2), 183–290 (2004).
[CrossRef]

E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
[CrossRef]

2003 (2)

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

2002 (1)

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

1998 (3)

V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
[CrossRef]

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

T. Ressler, “WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.5(2), 118–122 (1998).
[CrossRef] [PubMed]

1997 (1)

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

1996 (3)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
[CrossRef]

A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
[CrossRef]

1994 (1)

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

1993 (2)

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

J. Rodríguez-Carvajal, “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B192(1–2), 55–69 (1993).
[CrossRef]

1992 (1)

N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992).
[CrossRef]

1987 (2)

P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
[CrossRef]

B. M. J. Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater. Chem. Phys.16(3–4), 283–299 (1987).
[CrossRef]

1982 (1)

U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982).
[CrossRef]

1967 (1)

J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967).
[CrossRef]

1944 (1)

A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944).
[CrossRef]

Abicht, H. P.

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Attfield, J. P.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Bagshaw, H.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Balachandran, U.

U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982).
[CrossRef]

Bearden, J. A.

J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967).
[CrossRef]

Benedek, G.

A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
[CrossRef]

Bettinelli, M.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

Bishop, A. R.

A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
[CrossRef]

Boutinaud, P.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
[CrossRef]

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

Burr, A. F.

J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967).
[CrossRef]

Bussmann-Holder, A.

A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
[CrossRef]

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

Cao, C. Y.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

Cavalcante, L. S.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Cavalli, E.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

Chadha, S. S.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Chander, H.

D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
[CrossRef]

Chen, D. H.

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

Chen, L.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Cockroft, N. J.

N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992).
[CrossRef]

Coltrin, M. E.

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

Cousseins, J. C.

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

Cox, D. E.

P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
[CrossRef]

Creighton, J. R.

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

Csete de Györgyfalva, G. D. C.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Demekhin, P. V.

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

Diallo, P. T.

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

Djajanti, S.

V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
[CrossRef]

Dobry, A.

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

Domen, K.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Donghua, C.

T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009).
[CrossRef]

T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007).
[CrossRef]

Dorenbos, P.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

Dronskowski, R.

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Du, Y.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Dubois, M.

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

Ebbinghaus, S. G.

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Ehre, D.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Eror, N. G.

U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982).
[CrossRef]

Espinosa, J. W. M.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Evans, D. R.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Fang, Q.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

Fernandez, F.

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Frenkel, A. I.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Fuertes, A.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

A. Fuertes, “Synthesis and properties of functional oxynitrides—from photocatalysts to CMR materials,” Dalton Trans.39(26), 5942–5948 (2010).
[CrossRef] [PubMed]

Fujiwara, R.

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

Gibbons, C. S.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Hagemann, H.

Haranath, D.

D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
[CrossRef]

Hastings, J. B.

P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
[CrossRef]

Higashi, M.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Hirata, T.

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
[CrossRef]

Howe, R. F.

V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
[CrossRef]

Ishioka, K.

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
[CrossRef]

Jia, D.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Jia, J. H.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

Jia, W.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Jia, W. Y.

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Jorge, A. B.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Joya, M. R.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Kanner, L.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Karvonen, L.

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

Kase, K.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Khan, A. F.

D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
[CrossRef]

Kitajima, M.

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
[CrossRef]

Koh, J.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Kraizman, V. L.

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

Kuwabara, M.

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

Kuznetsov, V. N.

V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009).
[CrossRef]

Lin, Y. H.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Longo, E.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Lü, X. D.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

Lubomirsky, I.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Luca, V.

V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
[CrossRef]

Luo, Y. S.

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Lyahovitskaya, V.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Maeda, K.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Maegli, A.

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

Maegli, A. E.

Mahiou, R.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
[CrossRef]

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

Mandaliev, P.

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

Marques, V. S.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Meltzer, R. S.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Migoni, R.

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

Mizoguchi, T.

T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
[CrossRef]

Modrow, H.

H. Modrow, “Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view,” Appl. Spectrosc. Rev.39(2), 183–290 (2004).
[CrossRef]

Morton, D.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Muller, T.

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nan, C. W.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Nie, Z. G.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

Novakovich, A. A.

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

Oró-Solé, J.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Otal, E.

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

Otal, E. H.

Peng, X. D.

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Perez, A.

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Pinel, E.

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
[CrossRef]

Pizani, P. S.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Reaney, I. M.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Reller, A.

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Ren, X. G.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

Ressler, T.

T. Ressler, “WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.5(2), 118–122 (1998).
[CrossRef] [PubMed]

Rivera, I.

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Rodgers, J. A.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Rodriguez, T.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Rodríguez-Carvajal, J.

J. Rodríguez-Carvajal, “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B192(1–2), 55–69 (1993).
[CrossRef]

Sano, H.

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

Santos, M. R. M. C.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Sarakha, L.

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

Saunders, H. D.

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

Sczancoski, J. C.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Serpone, N.

V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009).
[CrossRef]

Shimizu, M.

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

Shu, W. G.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

Simmons, J. A.

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

Smets, B. M. J.

B. M. J. Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater. Chem. Phys.16(3–4), 283–299 (1987).
[CrossRef]

Smith, D. W.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Stachiotti, M.

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

Stern, E. A.

E. A. Stern, “Character of order-disorder and displacive components in barium titanate,” Phys. Rev. Lett.93(3), 037601 (2004).
[CrossRef] [PubMed]

Stokes, A. R.

A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944).
[CrossRef]

Tabata, M.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tanaka, I.

T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
[CrossRef]

Tang, J. F.

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Tang, W. J.

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

Tang, Z. L.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Terashima, H.

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Thompson, P.

P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
[CrossRef]

Tsao, J. Y.

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

Ubic, R.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Urazhdin, S. V.

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

Varela, J. A.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Vecht, A.

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Vedrinskii, R. V.

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

Vink, A. P.

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

Vogel-Schauble, N.

Volanti, D. P.

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Wachtel, E.

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Walfort, B.

Wang, J.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Wang, M. Y.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

Wang, X. J.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Wanjun, T.

T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009).
[CrossRef]

T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007).
[CrossRef]

Weidenkaff, A.

E. H. Otal, A. E. Maegli, N. Vogel-Schauble, B. Walfort, H. Hagemann, S. Yoon, A. Zeller, and A. Weidenkaff, “The influence of defects formed by Ca excess and thermal post-treatments on the persistent luminescence of CaTiO3:Pr3+,” Opt. Mater. Express2(4), 405–412 (2012).
[CrossRef]

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Wilson, A. J. C.

A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944).
[CrossRef]

Wright, J. C.

N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992).
[CrossRef]

Xie, S. Y.

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

Xiong, X. Q.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

Xu, G. W.

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

Xu, W. L.

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Yamamoto, T.

T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
[CrossRef]

Yang, L. Z.

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Yang, M. H.

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Yarwood, J.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Yen, W. M.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Yin, S. Y.

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

Yoon, S.

E. H. Otal, A. E. Maegli, N. Vogel-Schauble, B. Walfort, H. Hagemann, S. Yoon, A. Zeller, and A. Weidenkaff, “The influence of defects formed by Ca excess and thermal post-treatments on the persistent luminescence of CaTiO3:Pr3+,” Opt. Mater. Express2(4), 405–412 (2012).
[CrossRef]

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

Yu, Q. M.

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

Yu, X. B.

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Yuan, Y. H.

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

Zeller, A.

Zhang, C. H.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

Zhang, J. H.

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Zhang, X.

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Zhang, X. M.

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Zhang, Z. T.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Zhao, D.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Zheng, H.

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

Zhou, C. L.

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Zhu, A.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007).
[CrossRef]

Appl. Spectrosc. Rev. (1)

H. Modrow, “Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view,” Appl. Spectrosc. Rev.39(2), 183–290 (2004).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007).
[CrossRef]

Dalton Trans. (1)

A. Fuertes, “Synthesis and properties of functional oxynitrides—from photocatalysts to CMR materials,” Dalton Trans.39(26), 5942–5948 (2010).
[CrossRef] [PubMed]

J. Alloy. Comp. (1)

E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007).
[CrossRef]

J. Appl. Cryst. (1)

P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987).
[CrossRef]

J. Appl. Phys. (1)

H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003).
[CrossRef]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

J. Lumin. (3)

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005).
[CrossRef]

J. Mater. Sci. (2)

S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007).
[CrossRef]

X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007).
[CrossRef]

J. Phys. Chem. B (1)

V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998).
[CrossRef]

J. Phys. Chem. C (1)

V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998).
[CrossRef]

J. Phys. D Appl. Phys. (3)

J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010).
[CrossRef]

D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006).
[CrossRef]

P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009).
[CrossRef]

J. Solid State Chem. (2)

T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996).
[CrossRef]

A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011).
[CrossRef]

J. Synchrotron Radiat. (1)

T. Ressler, “WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.5(2), 118–122 (1998).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (1)

A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994).
[CrossRef]

Mater. Chem. Phys. (1)

B. M. J. Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater. Chem. Phys.16(3–4), 283–299 (1987).
[CrossRef]

Mater. Lett. (1)

J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006).
[CrossRef]

Mater. Res. Bull. (2)

T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010).
[CrossRef]

Nat. Chem. (1)

M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (3)

N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992).
[CrossRef]

A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996).
[CrossRef]

T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

E. A. Stern, “Character of order-disorder and displacive components in barium titanate,” Phys. Rev. Lett.93(3), 037601 (2004).
[CrossRef] [PubMed]

A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007).
[CrossRef] [PubMed]

Phys. Status. Solidi A (1)

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997).
[CrossRef]

Physica B (3)

J. Rodríguez-Carvajal, “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B192(1–2), 55–69 (1993).
[CrossRef]

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011).
[CrossRef]

Proc. Phys. Soc. (1)

A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944).
[CrossRef]

Prog. Solid State Chem. (1)

S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967).
[CrossRef]

Solid State Commun. (2)

U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982).
[CrossRef]

W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003).
[CrossRef]

Solid State Sci. (1)

V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Powder X-ray diffraction patterns of CaTiO3:Pr3+ ammonolyzed at different temperatures.

Fig. 2
Fig. 2

XRD pattern and Rietveld refinement of CaTiO3:Pr3+ ammonolyzed at 400 °C. The difference plot of observed and calculated diffraction profiles is shown together with the Bragg positions (short vertical markers).

Fig. 3
Fig. 3

Ti K-edge XANES spectra of the pre-edge region of CaTiO3:Pr3+ ammonolyzed at different temperatures.

Fig. 4
Fig. 4

(a) Raman spectra of CaTiO3:Pr3+ powders measured at room temperature, (b) 550 – 750 cm−1 regions enlarged.

Fig. 5
Fig. 5

Thermogravimetric analysis (TGA) of CaTiO3:Pr3+ ammonolyzed at different temperatures.

Fig. 6
Fig. 6

Photoluminescence excitation spectra (λemission = 612 nm) measured at 294 K in air for the samples annealed at 1300 °C, 1400 °C and 1500 °C. The inset shows the enlarged 450 – 500 cm−1 regions.

Fig. 7
Fig. 7

Photoluminescence excitation spectra (λemission = 612 nm) for CaTiO3:Pr3+ measured at 5 K. The excitation spectra are normalized by the peak intensity at 330 nm.

Fig. 8
Fig. 8

Photoluminescence excitation spectra (λemission = 612 nm) for NH3-400C at 5 K, 50 K, 100 K, 150 K,200 K, 250 K and 300 K. The excitation spectra are normalized by the peak intensity at 330 nm.

Fig. 9
Fig. 9

Phosphorescence decay profiles of CaTiO3:Pr3+ phosphors.

Fig. 10
Fig. 10

UV-Vis diffuse reflectance spectra of CaTiO3:Pr3+ powders ammonolyzed at different temperatures.

Tables (2)

Tables Icon

Table 1 Rietveld Refinement Results of All CaTiO3:Pr3+ Samples

Tables Icon

Table 2 Selected Bond Lengths (Å) and Angles (°) in CaTiO3:Pr3+

Metrics