L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29(5), 984–989 (2012).

[CrossRef]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media,” Appl. Phys. Lett.100(26), 261903 (2012).

[CrossRef]

L. Sun, K. W. Yu, and X. Yang, “Integrated optical devices based on broadband epsilon-near-zero meta-atoms,” Opt. Lett.37(15), 3096–3098 (2012).

[CrossRef]
[PubMed]

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).

[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt.13(2), 024001 (2011).

[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Physica B405(14), 2925–2929 (2010).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

E. Tuncer, “Geometrical description in binary composites and spectral density representation,” Materials3(1), 585–613 (2010).

[CrossRef]

C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett.35(4), 610–612 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010).

[CrossRef]
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

A. V. Goncharenko and K. R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophotonics4(1), 041530 (2010).

[CrossRef]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications,” Opt. Express18(26), 26915–26928 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010).

[CrossRef]
[PubMed]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express17(23), 21030–21041 (2009).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol.54(10), 3063–3082 (2009).

[CrossRef]
[PubMed]

E. Cherkaev and M.-J. Y. Ou, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inv. Probl.24(6), 065008 (2008).

[CrossRef]

D. Zhang and E. Cherkaev, “Pade approximations for identification of air bubble volume from temperature- or frequency-dependent permittivity of a two-component mixture,” Inv. Probl. Sci. Eng.16(4), 425–445 (2008).

[CrossRef]

A. K. Sharma and G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys.41(5), 055106 (2008).

[CrossRef]

L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008).

[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys.10(11), 115038 (2008).

[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).

[CrossRef]

A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007).

[CrossRef]

A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007).

[CrossRef]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

E. Tuncer, “Extracting the spectral density function of a binary composite without a priori assumptions,” Phys. Rev. B71(1), 012101 (2005).

[CrossRef]

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005).

[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005).

[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett.85(1), 94–96 (2004).

[CrossRef]

Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B67(16), 165104 (2003).

[CrossRef]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B20(12), 2448–2453 (2003).

[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001).

[CrossRef]

C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000).

[CrossRef]

V. U. Nazarov, “Bulk and surface dielectric response of a superlattice with an arbitrary varying dielectric function: A general analytical solution in the local theory in the long-wave limit,” Phys. Rev. B Condens. Matter49(24), 17342–17350 (1994).

[CrossRef]
[PubMed]

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55(9), 3382–3410 (1984).

[CrossRef]

S. K. Golden and G. Papanicolaou, “Bounds for effective parameters of heterogeneous media by analytic continuation,” Commun. Math. Phys.90(4), 473–491 (1983) (and references therein).

[CrossRef]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt.13(2), 024001 (2011).

[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010).

[CrossRef]
[PubMed]

C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol.54(10), 3063–3082 (2009).

[CrossRef]
[PubMed]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012).

[CrossRef]

A. V. Goncharenko and K. R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophotonics4(1), 041530 (2010).

[CrossRef]

C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol.54(10), 3063–3082 (2009).

[CrossRef]
[PubMed]

E. Cherkaev and M.-J. Y. Ou, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inv. Probl.24(6), 065008 (2008).

[CrossRef]

D. Zhang and E. Cherkaev, “Pade approximations for identification of air bubble volume from temperature- or frequency-dependent permittivity of a two-component mixture,” Inv. Probl. Sci. Eng.16(4), 425–445 (2008).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010).

[CrossRef]
[PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010).

[CrossRef]
[PubMed]

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

S. K. Golden and G. Papanicolaou, “Bounds for effective parameters of heterogeneous media by analytic continuation,” Commun. Math. Phys.90(4), 473–491 (1983) (and references therein).

[CrossRef]

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012).

[CrossRef]

A. V. Goncharenko and K. R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophotonics4(1), 041530 (2010).

[CrossRef]

A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001).

[CrossRef]

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55(9), 3382–3410 (1984).

[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).

[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005).

[CrossRef]

A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000).

[CrossRef]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B67(16), 165104 (2003).

[CrossRef]

L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008).

[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett.85(1), 94–96 (2004).

[CrossRef]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Physica B405(14), 2925–2929 (2010).

[CrossRef]

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).

[CrossRef]

A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007).

[CrossRef]

A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007).

[CrossRef]

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Physica B405(14), 2925–2929 (2010).

[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys.10(11), 115038 (2008).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B67(16), 165104 (2003).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001).

[CrossRef]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

A. K. Sharma and G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys.41(5), 055106 (2008).

[CrossRef]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012).

[CrossRef]

V. U. Nazarov, “Bulk and surface dielectric response of a superlattice with an arbitrary varying dielectric function: A general analytical solution in the local theory in the long-wave limit,” Phys. Rev. B Condens. Matter49(24), 17342–17350 (1994).

[CrossRef]
[PubMed]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55(9), 3382–3410 (1984).

[CrossRef]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

E. Cherkaev and M.-J. Y. Ou, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inv. Probl.24(6), 065008 (2008).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

S. K. Golden and G. Papanicolaou, “Bounds for effective parameters of heterogeneous media by analytic continuation,” Commun. Math. Phys.90(4), 473–491 (1983) (and references therein).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007).

[CrossRef]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007).

[CrossRef]

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005).

[CrossRef]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005).

[CrossRef]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).

[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

A. K. Sharma and G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys.41(5), 055106 (2008).

[CrossRef]

A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007).

[CrossRef]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).

[CrossRef]

C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000).

[CrossRef]

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express17(23), 21030–21041 (2009).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29(5), 984–989 (2012).

[CrossRef]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media,” Appl. Phys. Lett.100(26), 261903 (2012).

[CrossRef]

L. Sun, K. W. Yu, and X. Yang, “Integrated optical devices based on broadband epsilon-near-zero meta-atoms,” Opt. Lett.37(15), 3096–3098 (2012).

[CrossRef]
[PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).

[CrossRef]

E. Tuncer, “Geometrical description in binary composites and spectral density representation,” Materials3(1), 585–613 (2010).

[CrossRef]

E. Tuncer, “Extracting the spectral density function of a binary composite without a priori assumptions,” Phys. Rev. B71(1), 012101 (2005).

[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys.10(11), 115038 (2008).

[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

L. Sun, K. W. Yu, and X. Yang, “Integrated optical devices based on broadband epsilon-near-zero meta-atoms,” Opt. Lett.37(15), 3096–3098 (2012).

[CrossRef]
[PubMed]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media,” Appl. Phys. Lett.100(26), 261903 (2012).

[CrossRef]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29(5), 984–989 (2012).

[CrossRef]

L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008).

[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett.85(1), 94–96 (2004).

[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

D. Zhang and E. Cherkaev, “Pade approximations for identification of air bubble volume from temperature- or frequency-dependent permittivity of a two-component mixture,” Inv. Probl. Sci. Eng.16(4), 425–445 (2008).

[CrossRef]

L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008).

[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media,” Appl. Phys. Lett.100(26), 261903 (2012).

[CrossRef]

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012).

[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett.85(1), 94–96 (2004).

[CrossRef]

L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008).

[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).

[CrossRef]

V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005).

[CrossRef]

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010).

[CrossRef]

S. K. Golden and G. Papanicolaou, “Bounds for effective parameters of heterogeneous media by analytic continuation,” Commun. Math. Phys.90(4), 473–491 (1983) (and references therein).

[CrossRef]

E. Cherkaev and M.-J. Y. Ou, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inv. Probl.24(6), 065008 (2008).

[CrossRef]

D. Zhang and E. Cherkaev, “Pade approximations for identification of air bubble volume from temperature- or frequency-dependent permittivity of a two-component mixture,” Inv. Probl. Sci. Eng.16(4), 425–445 (2008).

[CrossRef]

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55(9), 3382–3410 (1984).

[CrossRef]

K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003).

[CrossRef]

See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein).

[CrossRef]

A. V. Goncharenko and K. R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophotonics4(1), 041530 (2010).

[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).

[CrossRef]

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt.13(2), 024001 (2011).

[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010).

[CrossRef]
[PubMed]

A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001).

[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010).

[CrossRef]
[PubMed]

A. K. Sharma and G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys.41(5), 055106 (2008).

[CrossRef]

E. Tuncer, “Geometrical description in binary composites and spectral density representation,” Materials3(1), 585–613 (2010).

[CrossRef]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).

[CrossRef]
[PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).

[CrossRef]
[PubMed]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys.10(11), 115038 (2008).

[CrossRef]

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express17(23), 21030–21041 (2009).

[CrossRef]
[PubMed]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications,” Opt. Express18(26), 26915–26928 (2010).

[CrossRef]
[PubMed]

J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009).

[CrossRef]
[PubMed]

C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol.54(10), 3063–3082 (2009).

[CrossRef]
[PubMed]

A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001).

[CrossRef]

Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B67(16), 165104 (2003).

[CrossRef]

A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).

[CrossRef]

C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000).

[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).

[CrossRef]

J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009).

[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010).

[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001).

[CrossRef]

E. Tuncer, “Extracting the spectral density function of a binary composite without a priori assumptions,” Phys. Rev. B71(1), 012101 (2005).

[CrossRef]

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005).

[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005).

[CrossRef]

V. U. Nazarov, “Bulk and surface dielectric response of a superlattice with an arbitrary varying dielectric function: A general analytical solution in the local theory in the long-wave limit,” Phys. Rev. B Condens. Matter49(24), 17342–17350 (1994).

[CrossRef]
[PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009).

[CrossRef]
[PubMed]

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Physica B405(14), 2925–2929 (2010).

[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011).

[CrossRef]

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Metallodielectric broadband metamaterials,” SPIE Newsroom (Feb. 6, 2012). DOI: 10.1117/2.1201201.0040207.

[CrossRef]

C. J. F. Böttger, Theory of Electric Polarization (Elsevier, 1952).