Abstract

The spectra of Er:Lu2O3 have been studied between 7 K and room temperature, particularly for transitions between the 4I13/2 and 4I15/2 manifolds. This includes the determination of energy levels for Er in the C2 site and some levels for the C3i site, as well as absorption and stimulated emission cross sections and radiative lifetimes. At cryogenic temperatures, the emission lines at 1576 and 1601 nm are promising for laser operation, and the unusual breadth of the 1535-nm zero line makes it attractive for diode laser pumping, thus providing the potential for very small quantum defect lasing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967).
    [CrossRef]
  2. V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).
  3. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012).
    [CrossRef] [PubMed]
  4. C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and Er,Yb:YVO4 Lasers near 1.6 µm for CO2 LIDAR,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2010), paper AMB15.
  5. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett.33(13), 1524–1526 (2008).
    [CrossRef] [PubMed]
  6. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 [Invited],” Opt. Mater. Express1(3), 503–513 (2011).
    [CrossRef]
  7. D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
    [CrossRef]
  8. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  9. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
    [CrossRef]
  10. J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
    [CrossRef]
  11. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  12. Volker Peters, “Growth and Spectroscopy of Ytterbium-Doped Sesquioxides,” dissertation, U. Hamburg (2001), http://www.physik.uni-hamburg.de/services /fachinfo/___Volltexte/Volker___Peters/Volker___Peters.pdf .
  13. K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003).
    [CrossRef] [PubMed]
  14. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
    [CrossRef]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
    [CrossRef]
  16. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
    [CrossRef]
  17. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
    [CrossRef]
  18. L. D. Merkle, N. Ter-Gabrielyan, and V. Fromzel, “Cryogenic laser properties of Er:YAG and Er:Sc2O3 – A comparison,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2011), paper AWA02.
  19. D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
    [CrossRef]
  20. M. Brian, Walsh, “Judd-Ofelt Theory: Principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. di Bartolo and O. Forte, eds. (Springer, 2006), pp. 403–433.
  21. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), pp. 274–294.
  22. M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
    [CrossRef]
  23. G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
    [CrossRef]
  24. L. D. Merkle and N. Ter-Gabrielyan, “Er3+ in Sc2O3 and Y2O3: Spectroscopy to elucidate laser behavior,” J. Lumin. 133, 254–256 (2013), doi: ; L. D. Merkle, N. Ter-Gabrielyan and K. J. Cote, International Conference on Luminescence 2011, paper ThII1.
    [CrossRef]

2012

2011

N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 [Invited],” Opt. Mater. Express1(3), 503–513 (2011).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

2009

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
[CrossRef]

2008

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett.33(13), 1524–1526 (2008).
[CrossRef] [PubMed]

2007

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

2005

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

2003

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003).
[CrossRef] [PubMed]

2000

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

1997

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

1982

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1967

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Anduleit, K.

K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003).
[CrossRef] [PubMed]

Antic, B.

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Balanda, M.

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

Basun, S. A.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Beil, K.

Bradley, W. M.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Brown, D. C.

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Concas, G.

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

Croft, W. J.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967).
[CrossRef]

Dubinskii, M.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Fornasiero, L.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Fromzel, V.

Gruber, J. B.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Huber, G.

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012).
[CrossRef] [PubMed]

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Hutchinson, J. A.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Ikesue, A.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Khazanov, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Klein, P. H.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967).
[CrossRef]

Kokta, M. R.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Kränkel, C.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Li, T.

Materlik, G.

K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003).
[CrossRef] [PubMed]

Merkle, L. D.

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
[CrossRef]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett.33(13), 1524–1526 (2008).
[CrossRef] [PubMed]

Mitric, M.

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

Mix, E.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Mukhin, I. B.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Napijalo, M. Lj.

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

Nash, K. L.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

Newburgh, G. A.

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Perevezentsev, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Perez, J. J.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Petermann, K.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Peters, V.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Rodic, D.

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

Sardar, D. K.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Spano, G.

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Ter-Gabrielyan, N.

N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 [Invited],” Opt. Mater. Express1(3), 503–513 (2011).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett.33(13), 1524–1526 (2008).
[CrossRef] [PubMed]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Trojan-Piegza, J.

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

Trussell, C. W.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Valiev, U. V.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

Vyatkin, A. G.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Zandi, B.

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

Zych, E.

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

Acta Crystallogr. A

K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003).
[CrossRef] [PubMed]

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

IEEE J. Quantum Electron.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

J. Appl. Phys.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967).
[CrossRef]

D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003).
[CrossRef]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008).
[CrossRef]

J. Phys. Condens. Matter

M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997).
[CrossRef]

G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005).
[CrossRef]

Laser Phys.

V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Quantum Electron.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011).
[CrossRef]

Other

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and Er,Yb:YVO4 Lasers near 1.6 µm for CO2 LIDAR,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2010), paper AMB15.

L. D. Merkle, N. Ter-Gabrielyan, and V. Fromzel, “Cryogenic laser properties of Er:YAG and Er:Sc2O3 – A comparison,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2011), paper AWA02.

Volker Peters, “Growth and Spectroscopy of Ytterbium-Doped Sesquioxides,” dissertation, U. Hamburg (2001), http://www.physik.uni-hamburg.de/services /fachinfo/___Volltexte/Volker___Peters/Volker___Peters.pdf .

L. D. Merkle and N. Ter-Gabrielyan, “Er3+ in Sc2O3 and Y2O3: Spectroscopy to elucidate laser behavior,” J. Lumin. 133, 254–256 (2013), doi: ; L. D. Merkle, N. Ter-Gabrielyan and K. J. Cote, International Conference on Luminescence 2011, paper ThII1.
[CrossRef]

M. Brian, Walsh, “Judd-Ofelt Theory: Principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. di Bartolo and O. Forte, eds. (Springer, 2006), pp. 403–433.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), pp. 274–294.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Room temperature absorption spectrum of Er:Lu2O3 with 0.22% of Lu replaced by Er.

Fig. 2
Fig. 2

Er3+ 4I15/24I13/2 absorption cross section spectra at 77 and 295 K, calculated assuming three-quarters of the dopant ions enter C2 sites, and that these dominate the spectra. Baselines offset for clarity.

Fig. 3
Fig. 3

Absorption and stimulated emission cross section spectra at two temperatures, assuming three-quarters of the dopant ions enter C2 sites. Blue: absorption at 77 K; red: stimulated emission at 77 K; green: absorption at room temperature; black: stimulated emission at room temperature. Baselines offset for clarity.

Fig. 4
Fig. 4

Predominant lifetime of the 4I13/2 manifold versus temperature. Red circles: experimental values with broad-band excitation for 1% Er; blue squares: experimental values with broad-band excitation for 0.22% Er; dark brown triangles: excitation of a C2-site line for 0.22% Er; light brown diamonds: excitation of non-C2 absorption lines for 0.22% Er. Green stars and line: radiative lifetime predicted by Eq. (1) including all stimulated emission lines and assuming 3/4 of Er ions in C2 sites; violet x’s and line: radiative lifetime predicted after subtracting all emission lines not identified with C2 sites; black + ’s and line: radiative lifetime including reabsorption for 0.22% Er and a radius of 0.07 cm in the reabsorption correction.

Fig. 5
Fig. 5

Linewidth of the 1535-nm (zero line) absorption peak as a function of temperature. The line is a guide to the eye.

Tables (3)

Tables Icon

Table 1 Energy levels inferred from Er:Lu2O3 spectra. Non-C2-site transitions identified as due to Er in the C3i site are denoted by (C3i).

Tables Icon

Table 2 Peak absorption and stimulated emission cross sections of the most prominent potential laser lines in Er:Lu2O3 at three temperatures. The cross sections were calculated assuming that three-quarters of the Er resides in the C2 sites.

Tables Icon

Table 3 Judd-Ofelt analysis: Measured room temperature line strengths, best fit Judd-Ofelt parameters, resulting theoretical line strengths, and resulting predicted radiative lifetime of 4I13/2 manifold.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 τ r a d = 8 π n 2 c σ s e λ 4 d λ

Metrics