Abstract

We correct an error in figure 6 of our manuscript [Opt. Mater. Exp. 2, 478–489 (2012)] showing the propagation length and confinement width of surface-plasmon-polariton on metal/air interface.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Geometries and materials for subwavelength surface plasmon modes

Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma
J. Opt. Soc. Am. A 21(12) 2442-2446 (2004)

Simulations of hybrid long-range plasmon modes with application to 90° bends

Aloyse Degiron, Claudio Dellagiacoma, James G. McIlhargey, Gennady Shvets, Olivier J. F. Martin, and David R. Smith
Opt. Lett. 32(16) 2354-2356 (2007)

Well-confined surface plasmon polaritons for sensing applications in the near-infrared

C. H. Gan and P. Lalanne
Opt. Lett. 35(4) 610-612 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
    [Crossref]

2012 (1)

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Boltasseva, A.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Kildishev, A.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Naik, G.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Ni, X.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Sands, T.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Schroeder, J.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Optical Materials Express (1)

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Comparison of the performance characteristics of SPP waveguides formed by the interface of air with titanium nitride-, gold (JC)- and gold with loss factor of 3.5: a) Propagation length (1/e field decay length along the propagation direction) b) Confinement width (1/e field decay widths as defined in Eq. (2)).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L w = 1 / Im ( k 0 ε m ε m + 1 )
D w = { δ D for | ε m | e δ D + δ m ln ( e / | ε m | ) for | ε m | < e

Metrics