Abstract

Heterogeneous integration of III-V semiconductor materials on a silicon-on-insulator (SOI) platform has recently emerged as one of the most promising methods for the fabrication of active photonic devices in silicon photonics. For this integration, it is essential to have a reliable and robust bonding procedure, which also provides a uniform and ultra-thin bonding layer for an effective optical coupling between III-V active layers and SOI waveguides. A new process for bonding of III-V dies to processed silicon-on-insulator waveguide circuits using divinylsiloxane-bis-benzocyclobutene (DVS-BCB) was developed using a commercial wafer bonder. This “cold bonding” method significantly simplifies the bonding preparation for machine-based bonding both for die and wafer-scale bonding. High-quality bonding, with ultra-thin bonding layers (<50 nm) is demonstrated, which is suitable for the fabrication of heterogeneously integrated photonic devices, specifically hybrid III-V/Si lasers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
    [CrossRef]
  2. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
    [CrossRef]
  4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010).
    [CrossRef]
  5. T. Mitze, M. Schnarrenberger, L. Zimmermann, J. Bruns, F. Fidorra, J. Kreissl, K. Janiak, S. Fidorra, H. Heidrich, and K. Petermann, “Hybrid integration of III/V lasers on a silicon-on-insulator (SOI) optical board,” in 2nd IEEE International Conference on Group IV Photonics,2005 (IEEE, 2005), pp. 210–212.
  6. D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
    [CrossRef]
  7. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
    [CrossRef]
  8. S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
    [CrossRef]
  9. S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett.34(18), 2802–2804 (2009).
    [CrossRef] [PubMed]
  10. S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett.24(20), 1849–1851 (2012).
    [CrossRef]
  11. F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
    [CrossRef]
  12. H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
    [CrossRef]
  13. F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
    [CrossRef]
  14. D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
    [CrossRef]
  15. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
    [CrossRef]
  16. S. Keyvaninia, M. Muneeb, S. Stankovic, G. Roelkens, D. Van Thourhout, and J.-M. Fedeli, “Multiple die-to-wafer adhesive bonding for heterogeneous integration,” in 16th European Conference on Integrated Optics (2012), paper 186.
  17. S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
    [CrossRef]
  18. S. Keyvaninia, G. Roelkens, and D. Van Thourhout, “Engineering the heterogeneously integrated III-V/SOI tunable laser,” in Proceedings of 2009Annual Symposium of the IEEE Photonics Benelux Chapte r(ASP—Academic & Scientific, 2009), pp. 141–144.
  19. S. Keyvaninia, S. Verstuyft, F. Lelarge, G. H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, J. Bolk, M. Smit, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/Si multi-wavelength laser based on a ring resonator array multiplexer,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper PAF4A.3.
  20. D. Van Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J. M. Fedeli, S. Messaoudene, and G. H. Duan, “Optimization of taper structures for III-V silicon lasers,” in 2012 International Conference on Solid State Devices and Materials (2012), pp. 524–525.
  21. P. De Heyn, S. Verstuyft, S. Keyvaninia, A. Trita, and D. Van Thourhout, “Tunable 4-channel ultra-dense WDM demultiplexer with III-V photodiodes integrated on silicon-on-insulator,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper ATh2B.1.
  22. “Processing procedures for CYCLOTENE 3000 series dry etch resins,” http://www.dow.com/cyclotene/prod/302235.htm .
  23. J. Pello, P. Saboya, S. Keyvaninia, J. J. G. M. van der Tol, G. Roelkens, H. P. M. M. Ambrosius, and M. K. Smit, “Post-bonding fabrication of photonic devices in an Indium phosphide membrane bonded on glass,” in Proceedings of the 16th Annual symposium of the IEEE Photonics Benelux Chapter (2011), pp. 213–216.
  24. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
    [CrossRef] [PubMed]

2012 (3)

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett.24(20), 1849–1851 (2012).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

2010 (2)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010).
[CrossRef]

2009 (2)

S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett.34(18), 2802–2804 (2009).
[CrossRef] [PubMed]

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

2006 (1)

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

2005 (1)

2004 (2)

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004).
[CrossRef] [PubMed]

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

2002 (1)

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

2001 (2)

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Agirregabiria, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Ambrosius, H.

Aramburu, I.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Arroyo, M. T.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Baets, R.

Bakin, A. S.

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Beckx, S.

Berganzo, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Bienstman, P.

Blanco, F. J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Bogaerts, W.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010).
[CrossRef]

Boyraz, O.

Chang, K. L.

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Cheng, K. Y.

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Choi, D.-H.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

de Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Dumon, P.

Enoksson, P.

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Famenini, S.

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett.24(20), 1849–1851 (2012).
[CrossRef]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Fedeli, J.-M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Fehly, D.

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Fonstad, C. G.

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett.24(20), 1849–1851 (2012).
[CrossRef]

Garcia, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Gutmann, R. J.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

Guttzeit, A.

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Heck, J.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

Hsieh, K. C.

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Im, Y.-H.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Jalali, B.

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Jokerst, N. M.

Jones, R.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Kalvesten, E.

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Keyvaninia, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
[CrossRef] [PubMed]

Kim, J.-S.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Kim, J.-T.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Kirch, J.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Kuech, T.

Kwon, Y.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Lin, H. C.

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Lu, J.-Q.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

Luyssaert, B.

Mawst, L.

Mayora, K.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Niklaus, F.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Ok, C.-W.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Palit, S.

Pello, J.

Pickrell, G. W.

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Roelkens, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37(17), 3711–3713 (2012).
[CrossRef] [PubMed]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Ruano, J. M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Schlachetzki, A.

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Smit, M.

Stankovic, S.

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

Stemme, G.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Sysak, M.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

Taillaert, D.

Tijero, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

Tsvid, G.

Van Campenhout, J.

van der Tol, J.

Van Thourhout, D.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

van Veldhoven, R.

Wehmann, H.-H.

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

Wiaux, V.

Yeo, C.-H.

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

Electrochem. Solid-State Lett. (1)

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14(8), H326–H329 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron.37(10), 1246–1252 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett.24(20), 1849–1851 (2012).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

J. Appl. Phys. (1)

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (3)

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng.14(7), 1047–1056 (2004).
[CrossRef]

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B20(2), 752–754 (2002).
[CrossRef]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev.4(6), 751–779 (2010).
[CrossRef]

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (8)

S. Keyvaninia, M. Muneeb, S. Stankovic, G. Roelkens, D. Van Thourhout, and J.-M. Fedeli, “Multiple die-to-wafer adhesive bonding for heterogeneous integration,” in 16th European Conference on Integrated Optics (2012), paper 186.

T. Mitze, M. Schnarrenberger, L. Zimmermann, J. Bruns, F. Fidorra, J. Kreissl, K. Janiak, S. Fidorra, H. Heidrich, and K. Petermann, “Hybrid integration of III/V lasers on a silicon-on-insulator (SOI) optical board,” in 2nd IEEE International Conference on Group IV Photonics,2005 (IEEE, 2005), pp. 210–212.

S. Keyvaninia, G. Roelkens, and D. Van Thourhout, “Engineering the heterogeneously integrated III-V/SOI tunable laser,” in Proceedings of 2009Annual Symposium of the IEEE Photonics Benelux Chapte r(ASP—Academic & Scientific, 2009), pp. 141–144.

S. Keyvaninia, S. Verstuyft, F. Lelarge, G. H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, J. Bolk, M. Smit, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/Si multi-wavelength laser based on a ring resonator array multiplexer,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper PAF4A.3.

D. Van Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J. M. Fedeli, S. Messaoudene, and G. H. Duan, “Optimization of taper structures for III-V silicon lasers,” in 2012 International Conference on Solid State Devices and Materials (2012), pp. 524–525.

P. De Heyn, S. Verstuyft, S. Keyvaninia, A. Trita, and D. Van Thourhout, “Tunable 4-channel ultra-dense WDM demultiplexer with III-V photodiodes integrated on silicon-on-insulator,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper ATh2B.1.

“Processing procedures for CYCLOTENE 3000 series dry etch resins,” http://www.dow.com/cyclotene/prod/302235.htm .

J. Pello, P. Saboya, S. Keyvaninia, J. J. G. M. van der Tol, G. Roelkens, H. P. M. M. Ambrosius, and M. K. Smit, “Post-bonding fabrication of photonic devices in an Indium phosphide membrane bonded on glass,” in Proceedings of the 16th Annual symposium of the IEEE Photonics Benelux Chapter (2011), pp. 213–216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Developed bonding process, referred to as “cold bonding”.

Fig. 2
Fig. 2

A full wafer 300 nm InP membrane bonded on a Pyrex glass wafer (a), a 100 mm silicon wafer (b) and a patterned SOI wafer (c) after substrate removal.

Fig. 3
Fig. 3

(a) A quarter InP wafer bonded on a Pyrex glass wafer using a 50 nm thick DVS-BCB bonding layer thickness; (b) A quarter InP wafer DVS-BCB bonded on Pyrex glass using a 130 nm thick DVS-BCB bonding layer using partial precuring at 150°C for 15 minutes; The color fringes result from DVS-BCB thickness variations. c) A quarter InP wafer DVS-BCB bonded on Pyrex glass using a 130 nm thick DVS-BCB bonding layer by partially curing at 180°C, showing no color fringes, resulting in a uniform bonding layer thickness. (d) A quarter InP wafer bonded on a Pyrex glass wafer DVS-BCB bonded on Pyrex glass using a 1050 nm DVS-BCB bonding layer thickness. The color fringes result from DVS-BCB thickness variations by partial precuring at 180°C for 15 min. e) A quarter InP wafer bonded with partially cured DVS-BCB @180°C for 30min, without the color fringes, resulting in a uniform bonding layer thickness.

Fig. 4
Fig. 4

Epitaxial quarter III-V wafer bonded on quasi-planarized SOI: (a) before substrate removal; (b) after substrate removal; (c) SEM image of the bonding interface.

Fig. 5
Fig. 5

(a-b) two epitaxial 0.3 cm2 III-V dies bonded on a planarized SOI die before and after the substrate removal process; (c-d) four epitaxial 0.3cm2 III-V dies bonded on a planarized SOI die before and after the substrate removal process; (e) SEM image of the bonding interface; (f) 6 InP-membranes (with an individual die area of 0.2 cm2) bonded on a 50 mm silicon wafer; (g) cross-section of the bonding interface; (h) 1.3 mm by 4 mm die transferred to a planarized SOI substrate before and after substrate removal.

Fig. 6
Fig. 6

Four-die bonding on planarized SOI with different substrate thickness, using a graphite foil to compensate for die-thickness variations: (a) schematic; (b) before substrate removal; (c) after substrate removal.

Fig. 7
Fig. 7

(a) X-ray diffraction rocking curves (both curves are offset for clarity) and (b) photoluminescence spectra of the InP/InGaAsP epitaxial layer stack on its original growth substrate (red) and after transfer to an SOI waveguide circuit (blue) using the cold bonding method.

Tables (2)

Tables Icon

Table 1 Statistical data of measured DVS-BCB thickness for five different full wafers bonded on a Pyrex glass wafera

Tables Icon

Table 2 Statistical data of measured DVS-BCB thickness for five different quarter wafers bonded on a Pyrex glass wafera

Metrics