Abstract

Birefringent materials have many applications in optical devices. An approach to obtain optically induced birefringence is to employ a guest-host strategy, using a polymer matrix containing an azodye. However, such method normally leads to low residual birefringence. Therefore, methodologies to produce microstructures with optimized birefringence are still on demand. Here we report on the fabrication, using two-photon polymerization, and characterization of birefringent microstructures produced in a polymer blend containing an azopolymer. Such microstructures present good structural integrity and residual birefringence of approximately 35 percent, depending on the sample formulation used, which indicates this approach for the fabrication of microoptical devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
    [CrossRef]
  2. C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
    [CrossRef]
  3. S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
    [CrossRef]
  4. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
    [CrossRef]
  5. C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
    [CrossRef]
  6. J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
    [CrossRef]
  7. A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
    [CrossRef]
  8. H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
    [CrossRef]
  9. O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
    [CrossRef] [PubMed]
  10. S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
    [CrossRef]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  12. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  13. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
    [CrossRef]
  14. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  15. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011).
    [CrossRef]
  16. H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
    [CrossRef]
  17. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
    [CrossRef]
  18. D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
    [CrossRef]
  19. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010).
    [CrossRef] [PubMed]
  20. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011).
    [CrossRef] [PubMed]
  21. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
    [CrossRef]
  22. F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
    [CrossRef]

2012 (1)

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (1)

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

2007 (3)

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

2006 (2)

F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
[CrossRef]

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

2005 (2)

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

2004 (1)

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

2001 (2)

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

2000 (1)

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

1999 (1)

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

1998 (1)

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

1997 (1)

1995 (1)

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
[CrossRef]

1992 (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Andrade, A. A.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Asaba, K.

Baldacchini, T.

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Balogh, D. T.

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Barlow, S.

Bian, S. P.

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Campagnola, P. J.

Cardoso, M. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

Chang, C.-Y.

Chen, L.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Chen, Q. D.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Chen, S.-J.

Chen, V. W.

Cho, K.-C.

Constantino, C. J. L.

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Correa, D. S.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

Dall'Agnol, F. F.

F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
[CrossRef]

De Boni, L.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Dhanabalan, A.

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Dong, C. Y.

Dong, W. T.

dos Santos, D. S.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

Duan, X. M.

Farrer, R. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Fischer, J.

Fourkas, J. T.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Giacometti, J. A.

F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
[CrossRef]

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Guo, J. Y.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Hales, J. M.

Haske, W.

He, J. A.

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Hirao, K.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Huang, L. L. H.

Jin, F.

Jones, A. C.

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Kawata, S.

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011).
[CrossRef] [PubMed]

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Knoll, W.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
[CrossRef]

Kumar, J.

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Kuo, W.-S.

LaFratta, C. N.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Li, L.

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Lien, C.-H.

Lin, C.-Y.

Liu, X. W.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Ma, Y. G.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Mackay, F. S.

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Magennis, S. W.

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Marder, S. R.

Maruo, S.

Masui, K.

Matsuo, S.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Mazur, E.

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

Mendonça, C. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Misawa, H.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Misoguti, L.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Nakamura, O.

Natansohn, A.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Neves, U. M.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Oliveira, O. N.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
[CrossRef]

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Pavinatto, F. J.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Perry, J. W.

Qian, G. D.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Riul, A.

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Rochon, P.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Rodgers, T. C.

Sadler, P. J.

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Sekkat, Z.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
[CrossRef]

Shoji, S.

Si, J. H.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Sun, H. B.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Tait, K. M.

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Takada, K.

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

Tayalia, P.

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Tribuzi, V.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

Tripathy, S. K.

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Wang, F. F.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Wang, M.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Wegener, M.

Wood, J.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
[CrossRef]

Wu, D.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Xia, H.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Xie, S.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Zhang, W. Y.

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

Zilio, S. C.

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Zu, J. F.

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

Zucolotto, V.

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011).
[CrossRef]

Chem. Mater. (1)

S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

J. Appl. Phys. (2)

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007).
[CrossRef]

J. Phys. Chem. (1)

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995).
[CrossRef]

Langmuir (1)

A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998).
[CrossRef]

Macromolecules (1)

F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006).
[CrossRef]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microscopy images of a microstructure containing HEMA-DR13. (a) Scanning electron micrograph and (b) bright field image.

Fig. 2
Fig. 2

(a) Experimental setup used to observe the optically induced birefringence in microscopic samples. (b) Image observed in the CCD camera before the writing beam irradiation and (c) after writing beam exposure (one minute).

Fig. 3
Fig. 3

Optically induced birefringence experiment for a macroscopic sample with Sample 2 composition (50 wt % of resin A and B). The writing beam irradiance for both samples is 140 mW/cm2. The writing beam is turned on and off at points I and II, respectively. The point III denotes the residual signal after turning off the writing beam

Fig. 4
Fig. 4

Optically induced birefringence experiment for microstructures: (a) Sample 1 (70 wt % of monomer A and 30 wt % of B) and (b) Sample 2 (50 wt % of monomer A and B). The writing beam irradiance for both samples is 330 mW/cm2.

Tables (1)

Tables Icon

Table 1 Fast Response Time as a Function of Writing Beam Intensities for Samples 1 and 2*

Metrics