Abstract

Mid to far-infrared (terahertz) spectroscopy is a valuable tool for probing and characterizing macromolecular structures and motions of complex molecules, including low frequency vibrational and phonon modes in condensed phases. We describe here an improved and readily implemented method for performing terahertz spectroscopic measurements by using a nanoporous silicon substrate to capture and concentrate the substance to be analyzed. We compare the results to conventional sampling methods, including dissolution and crystallization on a flat silicon surface and dispersing crystallites in compressed polyethylene pellets, and show that the use of a transparent, nanoporous substrate provides both increased sensitivity and yields sharper spectral features than conventional solid-state sampling approaches. FTIR measurements are reported over the spectral range from 50–2000 cm−1 (1.5–60 THz), for salicylic acid, dicyanobenzene, glycine, and aspartame.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14, 1128–1130 (1989).
    [CrossRef]
  2. O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
    [CrossRef]
  3. S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
    [CrossRef]
  4. M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
    [CrossRef]
  5. N. Peica, “Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling,” J. Raman Spectrosc.40, 2144–2154 (2009).
    [CrossRef]
  6. V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
    [CrossRef]
  7. E. J. Heilweil and D. F. Plusquellic, “Terahertz spectroscopy of biomolecules,” in Terahertz Spectroscopy: Principles and Applications, S. Dexheimer, ed. (CRC Press, 2008), pp. 269–298.
  8. V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
    [CrossRef]
  9. M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002).
    [CrossRef]
  10. J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
    [CrossRef]
  11. S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
    [CrossRef]
  12. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
    [CrossRef] [PubMed]
  13. Certain commercial equipment, instruments or materials are identified here to adequately specify the experimental procedure. In no case does identification imply recommendation or endorsement by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  14. M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
    [CrossRef]
  15. S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
    [CrossRef]
  16. Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007).
    [CrossRef] [PubMed]
  17. J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
    [CrossRef]
  18. A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
    [CrossRef]
  19. X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
    [CrossRef]
  20. Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
    [CrossRef]

2012 (2)

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

2009 (1)

N. Peica, “Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling,” J. Raman Spectrosc.40, 2144–2154 (2009).
[CrossRef]

2008 (1)

M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
[CrossRef]

2007 (4)

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007).
[CrossRef] [PubMed]

A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
[CrossRef]

O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
[CrossRef]

2006 (3)

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

2005 (1)

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

2003 (1)

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

2002 (1)

M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002).
[CrossRef]

1997 (1)

J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
[CrossRef]

1993 (1)

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

1989 (1)

1983 (1)

V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
[CrossRef]

Ajito, K.

Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007).
[CrossRef] [PubMed]

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

Bhat, M.

M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002).
[CrossRef]

Bouchard, A.

A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
[CrossRef]

Brown, C.

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Campbell, M.

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Colombo, L.

V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
[CrossRef]

Dharmaprakash, S.

M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002).
[CrossRef]

Esenturk, O.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
[CrossRef]

Evans, A.

O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
[CrossRef]

Fattinger, C.

Fischer, B. M.

M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
[CrossRef]

Franz, M.

M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
[CrossRef]

Furic, K.

V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
[CrossRef]

Grischkowsky, D.

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14, 1128–1130 (1989).
[CrossRef]

Harsha, S. S.

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

Heilweil, E.

O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
[CrossRef]

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Heilweil, E. J.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

E. J. Heilweil and D. F. Plusquellic, “Terahertz spectroscopy of biomolecules,” in Terahertz Spectroscopy: Principles and Applications, S. Dexheimer, ed. (CRC Press, 2008), pp. 269–298.

Higgins, J.

J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
[CrossRef]

Hofland, G. W.

A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
[CrossRef]

Igarashi, N.

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Inerbaev, T. M.

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Iwaki, L.

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Kawazoe, Y.

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Korter, T.

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Kumar, S.

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

Kutteruf, M.

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

Laman, N.

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

Lewars, E. G.

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

Liu, R.

J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
[CrossRef]

March, R. E.

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

Meenakshisundaram, S.

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Meenatchi, V.

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Melinger, J. S.

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

Mizuseki, H.

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Mojumdar, S.

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Muthu, K.

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Parnis, J. M.

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

Peica, N.

N. Peica, “Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling,” J. Raman Spectrosc.40, 2144–2154 (2009).
[CrossRef]

Plusquellic, D. F.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

E. J. Heilweil and D. F. Plusquellic, “Terahertz spectroscopy of biomolecules,” in Terahertz Spectroscopy: Principles and Applications, S. Dexheimer, ed. (CRC Press, 2008), pp. 269–298.

Qadri, S. B.

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

Rai, A. K.

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

Rai, S.

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

Rajasekar, M.

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Rungsawang, R.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

Saito, S.

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Siegrist, K.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

Singh, V.

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

Tomita, I.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

Ueno, Y.

Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007).
[CrossRef] [PubMed]

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

van Exter, M.

Volovšek, V.

V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
[CrossRef]

Walther, M.

M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
[CrossRef]

Witkamp, G.-J.

A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
[CrossRef]

Zhang, X. K.

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

Zhou, X.

J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
[CrossRef]

Anal. Sci. (1)

Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008).
[CrossRef]

J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006).
[CrossRef]

Chem. Lett. (1)

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006).
[CrossRef]

Chem. Phys. Chem. (1)

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003).
[CrossRef]

O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012).
[CrossRef]

J. Chem. Eng. Data (1)

A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007).
[CrossRef]

J. Cryst. Growth (1)

M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002).
[CrossRef]

J. Phys. Chem. (1)

X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993).
[CrossRef]

J. Raman Spectrosc. (2)

N. Peica, “Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling,” J. Raman Spectrosc.40, 2144–2154 (2009).
[CrossRef]

V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983).
[CrossRef]

J. Therm. Anal. Calorim. (1)

V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006).
[CrossRef]

Opt. Lett. (1)

Spectrochim. Acta (1)

S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005).
[CrossRef]

Spectrochim. Acta A (1)

J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997).
[CrossRef]

Other (2)

Certain commercial equipment, instruments or materials are identified here to adequately specify the experimental procedure. In no case does identification imply recommendation or endorsement by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

E. J. Heilweil and D. F. Plusquellic, “Terahertz spectroscopy of biomolecules,” in Terahertz Spectroscopy: Principles and Applications, S. Dexheimer, ed. (CRC Press, 2008), pp. 269–298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Diagram of the electrochemical etching system used to produce the porous silicon samples. (b) Scanning electron micrograph showing top-down and cross-sectional views of the porous silicon, (c) Transmitted signal from 15 separately fabricated porous silicon substrates, in comparison to the measured sample obtained with the sample removed. Yellow and red regions illustrate spectral regimes limited by the porous silicon substrate and the FTIR detector polyethylene window, respectively. The gray trace shows the system spectrum without a sample.

Fig. 2
Fig. 2

Diagram of fixture used to apply solutions for crystallization within porous silicon substrates. A droplet of the analyte (dissolved in a suitable solvent) is deposited onto the front surface of the porous silicon, and drawn into the porous template by a weak vacuum applied to the back side of the sample.

Fig. 3
Fig. 3

Absorption spectra of salicylic acid loaded into a conventional polyethylene pellet (red line), porous silicon (blue line) and deposited on an intrinsic silicon wafer (green line). The absorbance of the salicylic acid pellet is shifted vertically for clarity. Oscillation of the flat silicon case in the low wavenumber regime (< 300cm−1) is due to the Fabry-Perot resonances of the flat silicon wafer substrate. As with Fig. 1, yellow regions delineate spectral regimes limited by absorption of the substrate while the red regions depict spectral regimes limited by the FTIR system. Inset: enlarged plot of spectral line at 282 cm−1, comparing the line shape for the pressed pellet and porous silicon.

Fig. 4
Fig. 4

Comparison between polyethylene pellet (Red), porous silicon (Blue) and flat silicon (Green) loaded with 1,3-dicyanobenzene and 1,4-dicyanpbenzene. Porous silicon and polyethylene results are shifted vertically for clarity. Gray lines correspond to absorption peaks of residual acetone on the porous silicon substrates while purple lines delineate cancellation artifacts for polyethylene pellets. Yellow and red regimes illustrate porous silicon and system limited regimes as in Fig. 1(c).

Fig. 5
Fig. 5

(a) Absorption spectra of glycine loaded into a polyethylene pellet (red line), porous silicon (blue to purple lines) and on an intrinsic silicon wafer surface (green line). As with Fig. 3, the yellow and red regions delineate low signal regimes due to absorption bands of porous silicon and the FTIR polyethylene window. Oscillation in the intrinsic silicon case is due to Fabry-Perot resonances. Spectra are shifted vertically for clarity. As water:acetone solvent evaporated from the porous silicon substrate, some glycine absorption features shifted and sharpened while others emerged or diminished. (b) Porous silicon loaded with the same volume of acetone:water mixture. Absorption features of the control clearly explain the observed changes of absorption features for porous silicon loaded with glycine/acetone/water.

Fig. 6
Fig. 6

Comparison between the polyethylene pellet with aspartame (blue line), porous silicon loaded with aspartame/acetone/water (red line) and acetone/water (green line) after equilibrium has been reached.

Fig. 7
Fig. 7

Variation of the absorption features of salicylic acid/acetone and pure acetone versus the accumulated volume of the analyte dropped onto a porous silicon substrate. (a) Baseline compensated peak values for salicylic acid/acetone (blue opened circles) and pure acetone (red closed squares). (b) Corresponding salicylic acid/acetone absorption features. The legend contains the dropped analyte volume (calculated analyte weight) for each successive addition. (c) Corresponding solvent-only control experiment on the same absorbance scale. The legend contains the dropped acetone volume.

Metrics