Abstract

Highly transparent Yb doped YAG single crystals with diameter more than 90mm have been grown by Bagdasarov method also known as Horizontal Direct Crystallization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
    [CrossRef]
  2. W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser.112(3), 032036 (2008).
    [CrossRef]
  3. J.-C. Chanteloup, D. Albach, G. Bourdet, P. Hollander, and B. Vincent, “Impact of variable doped gain medium on HiPER multiple kJ / ~10Hz diode pumped beam lines design,” in Advanced Solid State Photonics Topical Meeting and Tabletop Exhibit (ASSP), Denver, Colorado, USA (1–4 Feb. 2009).
  4. J-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advanced Solid-State Photonics (ASSP), Istanbul, Turkey, (13–16 Feb. 2011).
  5. J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
    [CrossRef]
  6. G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
    [CrossRef]
  7. X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
    [CrossRef]
  8. Kh. S. Bagdasarov, “Vysokotemperaturnaya kristallizatsiya iz rasplava” (M.: Fizmatlit, 2004).
  9. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
    [CrossRef]
  10. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
    [CrossRef]
  11. Kh. S. Bagdasarov and L. A. Goryainov, “Teplo- i massoperenos pri vyrashchivanii monokristallov napravlennoi kristallizatsiei” (M.: Fizmatlit, 2007).
  12. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

2012

2011

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

2008

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser.112(3), 032036 (2008).
[CrossRef]

2006

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

2003

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Albach, D.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Ananyan, N.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Azrakantsyan, M.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Chanteloup, J.-C.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Deng, P.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

Gevorgyan, V.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Meier, W. R.

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser.112(3), 032036 (2008).
[CrossRef]

Si, J.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

Song, H.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

Song, P. X.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Xu, J.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

Xu, X.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Xu, Y.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

Zeng, X.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

Zhao, G.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Zhao, J.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

Zhao, Z.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

Zhou, Y.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

J. Cryst. Growth

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth252(1-3), 355–359 (2003).
[CrossRef]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth253(1-4), 290–296 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth257(3-4), 297–300 (2003).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

J. Phys.: Conf. Ser.

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser.112(3), 032036 (2008).
[CrossRef]

Nat. Phys.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

Opt. Mater. Express

Other

Kh. S. Bagdasarov and L. A. Goryainov, “Teplo- i massoperenos pri vyrashchivanii monokristallov napravlennoi kristallizatsiei” (M.: Fizmatlit, 2007).

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Kh. S. Bagdasarov, “Vysokotemperaturnaya kristallizatsiya iz rasplava” (M.: Fizmatlit, 2004).

J.-C. Chanteloup, D. Albach, G. Bourdet, P. Hollander, and B. Vincent, “Impact of variable doped gain medium on HiPER multiple kJ / ~10Hz diode pumped beam lines design,” in Advanced Solid State Photonics Topical Meeting and Tabletop Exhibit (ASSP), Denver, Colorado, USA (1–4 Feb. 2009).

J-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advanced Solid-State Photonics (ASSP), Istanbul, Turkey, (13–16 Feb. 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Regular (left) and “wide”(right) crucibles for HDC method.

Fig. 2
Fig. 2

Respective positions of the heater and the crucible and the nature of its content during the crystallization phase.

Fig. 3
Fig. 3

92 mm diameter extracted crystal (left) and its absorption spectrum (right).

Fig. 4
Fig. 4

Transmission near 1030nm and extrapolated respective concentrations at 6 different points 5mm away from periphery.

Fig. 5
Fig. 5

Crystal under crossed polarizer for visible light.

Fig. 6
Fig. 6

Transmitted light intensity vs analyzer rotation for three different cases.

Fig. 7
Fig. 7

77mm YAG crystals for LUCIA cryogenic amplifier.

Metrics