Abstract

A Tm:YLF slab laser was wavelength selected to operate at 1890 nm. The oscillator consisted of a single 2.5% doped Tm:YLF slab, a volume Bragg Grating (VBG) mirror and a 90% output-coupler. The slab crystal was pumped with a 300 W diode stack using a pump reproducing configuration. The output power exceeded 80 W and the beam quality factors in the horizontal and vertical directions were 182 and 2.5 respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
    [CrossRef]
  2. H. J. Strauss, W. Koen, C. Bollig, M. J. D. Esser, C. Jacobs, O. J. P. Collett, and D. R. Preussler, “Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses,” Opt. Express19(15), 13974–13979 (2011).
    [CrossRef] [PubMed]
  3. G. Renz and W. Bohn, “Two-micron thulium-pumped-holmium laser source for DIRCM applications,” Proc. SPIE6552, 655202 (2007).
    [CrossRef]
  4. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
    [CrossRef]
  5. M. Schellhorn, S. Ngcobo, C. Bollig, M. J. D. Esser, D. R. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009).
  6. R. Paschotta, “Bragg Gratings,” Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/bragg_gratings.html .
  7. N. Hodgson and H. Weber, “Phase-conjugate resonators using SBS,” in Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005), pp. 574–575.
  8. G. B. Venus, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE5711, 166–176 (2005).
    [CrossRef]
  9. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett.33(8), 881–883 (2008).
    [CrossRef] [PubMed]
  10. Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
    [CrossRef]
  11. A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm:YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics (CLEO US) (2004).
  12. X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
    [CrossRef]
  13. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009).
    [CrossRef]
  14. M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
    [CrossRef]

2011 (2)

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

H. J. Strauss, W. Koen, C. Bollig, M. J. D. Esser, C. Jacobs, O. J. P. Collett, and D. R. Preussler, “Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses,” Opt. Express19(15), 13974–13979 (2011).
[CrossRef] [PubMed]

2010 (2)

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

2009 (1)

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009).
[CrossRef]

2008 (1)

2007 (1)

G. Renz and W. Bohn, “Two-micron thulium-pumped-holmium laser source for DIRCM applications,” Proc. SPIE6552, 655202 (2007).
[CrossRef]

2006 (1)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

2005 (1)

G. B. Venus, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE5711, 166–176 (2005).
[CrossRef]

1998 (1)

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Antipov, O. L.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

Bohn, W.

G. Renz and W. Bohn, “Two-micron thulium-pumped-holmium laser source for DIRCM applications,” Proc. SPIE6552, 655202 (2007).
[CrossRef]

Bollig, C.

Clarkson, W.

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

Collett, O. J. P.

Duan, X. M.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Esser, M. J. D.

Fedorov, M.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

Hanna, D.

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Hardman, P.

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Jacobs, C.

Ju, Y.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Ju, Y. L.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Kern, M.

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Koen, W.

Li, G.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

McComb, T.

Ngcobo, S.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009).
[CrossRef]

Pollnau, M.

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Preussler, D. R.

Prodanets, N. N.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Renz, G.

G. Renz and W. Bohn, “Two-micron thulium-pumped-holmium laser source for DIRCM applications,” Proc. SPIE6552, 655202 (2007).
[CrossRef]

Richardson, M.

Schellhorn, M.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009).
[CrossRef]

Shakhova, N. M.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Sharkov, V. V.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

Snopova, L. B.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

Sroka, R.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Strauss, H. J.

Sudesh, V.

Venus, G. B.

G. B. Venus, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE5711, 166–176 (2005).
[CrossRef]

Wang, Q.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Wang, T. H.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Wang, Y.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Wang, Y. Z.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Wang, Z.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Wu, C.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Yao, B. Q.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

Zakharov, N. G.

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Zhou, R.

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Appl. Phys. B (3)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B84(3), 389–393 (2006).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm:YLF laser with a volume Bragg grating,” Appl. Phys. B99(3), 465–468 (2010).
[CrossRef]

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009).
[CrossRef]

Laser Phys. (1)

Y. Ju, R. Zhou, Q. Wang, C. Wu, Z. Wang, and Y. Wang, “Single-longitudinal-mode lasing of Tm, Ho:GdVO4 using a filter of Fabry-Perot etalon and volume Bragg grating,” Laser Phys.20(4), 799–801 (2010).
[CrossRef]

Med. Laser Appl. (1)

O. L. Antipov, N. G. Zakharov, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, and R. Sroka, “Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl.26(2), 67–75 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Pollnau, P. Hardman, M. Kern, W. Clarkson, and D. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998).
[CrossRef]

Proc. SPIE (2)

G. B. Venus, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE5711, 166–176 (2005).
[CrossRef]

G. Renz and W. Bohn, “Two-micron thulium-pumped-holmium laser source for DIRCM applications,” Proc. SPIE6552, 655202 (2007).
[CrossRef]

Other (4)

M. Schellhorn, S. Ngcobo, C. Bollig, M. J. D. Esser, D. R. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009).

R. Paschotta, “Bragg Gratings,” Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/bragg_gratings.html .

N. Hodgson and H. Weber, “Phase-conjugate resonators using SBS,” in Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005), pp. 574–575.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm:YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics (CLEO US) (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of the double-pass pumped, VBG wavelength selected, Tm:YLF laser.

Fig. 2
Fig. 2

Photo of the compact VBG stabilized resonator. The glowing crystal can be seen in the middle, the VBG in its water-cooled mount to the left and the output-coupler and collimating lenses to the right.

Fig. 3
Fig. 3

1890 nm output power as a function of incident 792 nm diode pump power.

Fig. 4
Fig. 4

Long term output power stability of the VBG wavelength selected, Tm:YLF laser.

Fig. 5
Fig. 5

Propagation of the 1890 nm output beam in both transverse directions after an f = 105 mm spherical lens and an intensity beam profile at maximum output power (inset).

Metrics