Abstract

In this paper, a direct switching between a transparent (or reflecting) planar (P) state to an opaque (or transparent) focal conic (FC) state and vice-versa of a polymer free bistable cholesteric light shutter without any homogeneous polyimide (PI) layer, is demonstrated based on the sign inversion of dielectric anisotropy of dual frequency liquid crystal (DFLC). The direct switching was achieved by applying square wave field at low (1 kHz) and high (50 kHz) frequency. As a result, the DFLC light shutter sustains bistable bright and dark states in electric field off state and exhibits excellent electro-optic performance. The direct switching from the FC to P states not only supports more uniform P state but also significantly reduces switching voltage by eliminating the high field homeotropic (H) state required for the switching in the conventional polymer stabilized cholesteric texture (PSCT) light shutter. The driving voltage applied to make a transition from the P to FC one is relatively low (3Vp-p/µm). Further, switching time from FC to P state was reduced drastically with homeotropic PI layer. Results show that dual frequency cholesteric liquid crystal (DFCLC) light shutter holds a great promise for use in energy efficient display devices and switchable windows.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express11(6), 560–565 (2003).
    [CrossRef] [PubMed]
  2. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
    [CrossRef]
  3. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
    [CrossRef]
  4. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
    [CrossRef]
  5. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
    [CrossRef] [PubMed]
  6. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A(*) liquid-crystal color filter,” Opt. Lett.15(10), 523–525 (1990).
    [CrossRef] [PubMed]
  7. H. J. Masterson, G. D. Sharp, and K. M. Johnson, “Ferroelectric liquid-crystal tunable filter,” Opt. Lett.14(22), 1249–1251 (1989).
    [CrossRef] [PubMed]
  8. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).
  9. K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
    [CrossRef]
  10. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
    [CrossRef]
  11. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
    [CrossRef]
  12. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
    [CrossRef]
  13. Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
    [CrossRef]
  14. Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
    [CrossRef]
  15. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
    [CrossRef]
  16. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  17. B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).
  18. J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
    [CrossRef]
  19. A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
    [CrossRef]
  20. D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol.2(1), 32–37 (2006).
    [CrossRef]
  21. W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
    [CrossRef] [PubMed]
  22. S. Shandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
  23. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
  24. D.-K. Yang, L.-C. Chien, and Y. K. Fung, Liquid Crystals in Complex Geometries, G. P. Crawford and S. Zumer, eds. (Taylor & Francis, 1996), Chap. 1, pp. 103–142.
  25. Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
    [CrossRef]
  26. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, Ltd. 2001), Chap. 3, pp. 98–99 (2001).
  27. T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
    [CrossRef]
  28. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010).
    [CrossRef] [PubMed]
  29. R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).
  30. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010).
    [CrossRef]
  31. Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
    [CrossRef]
  32. M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999).
    [CrossRef]
  33. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express19(10), 9744–9749 (2011).
    [CrossRef] [PubMed]
  34. P. G. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun.6(3), 163–165 (1968).
    [CrossRef]
  35. K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express19(11), 10174–10179 (2011).
    [CrossRef] [PubMed]
  36. X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
    [CrossRef]
  37. H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985).
    [CrossRef]
  38. S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley -VCH, 1999), Chap. 4, p. 103.
  39. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Y. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett.36(14), 2632–2634 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (2)

2009 (1)

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).

2007 (1)

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

2006 (2)

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol.2(1), 32–37 (2006).
[CrossRef]

Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
[CrossRef]

2005 (1)

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

2004 (2)

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

2003 (1)

2002 (3)

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

2001 (1)

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

2000 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

1999 (2)

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
[CrossRef]

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999).
[CrossRef]

1998 (1)

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

1997 (1)

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

1996 (1)

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

1995 (2)

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

1994 (3)

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

1992 (1)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

1990 (1)

1989 (2)

H. J. Masterson, G. D. Sharp, and K. M. Johnson, “Ferroelectric liquid-crystal tunable filter,” Opt. Lett.14(22), 1249–1251 (1989).
[CrossRef] [PubMed]

Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
[CrossRef]

1985 (1)

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985).
[CrossRef]

1968 (1)

P. G. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun.6(3), 163–165 (1968).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Akins, R. B.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Anderson, J.

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

Armbruster, R.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Bao, R.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).

Bos, P.

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

Bunning, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Bunning, T. J.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Chen, C.-H.

Chien, L.-C.

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Chih, Y. S.

Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
[CrossRef]

Davis, D.

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

De Gennes, P. G.

P. G. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun.6(3), 163–165 (1968).
[CrossRef]

Desai, P.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Dessaud, N.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
[CrossRef] [PubMed]

Doane, J. W.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Doroski, D.

Fritz, W.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Fu, K.-Y.

Fung, Y. K.

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

Ge, Z.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

Glasser, J.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Hsiao, Y.-C.

Huang, C.-Y.

Huang, X.-Y.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Huang, Y.

Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
[CrossRef]

Ikeda, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Jin, H.-J.

Johnson, K. M.

Kawata, Y.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
[CrossRef]

Ke, S. W.

Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
[CrossRef]

Khan, A.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Kim, J. C.

Kim, K. H.

Kim, K.-H.

Klosterman, J.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

Koikea, Y.

Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
[CrossRef]

Lee, J. H.

Lee, J.-H.

Lee, W.

Lewis, K.

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

Li, Z.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Lin, Y.-H.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

Liu, C.-M.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).

Lo, K.-Y.

Lu, Z.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Ma, J.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010).
[CrossRef]

Mason, I.

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

Masterson, H. J.

Miller, N.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Mitov, M.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
[CrossRef] [PubMed]

Mochizukia, A.

Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
[CrossRef]

Natarajan, L.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Natarajan, L. V.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Nicholson, F.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Nie, X.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

Nouvet, E.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
[CrossRef] [PubMed]

Park, B. W.

Park, K. H.

Park, K.-H.

Ren, H.

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

Rochester, K.

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

Ruth, J.

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

Sergan, V.

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

Sharp, G. D.

Shen, Z. G.

Shi, L.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010).
[CrossRef]

Siwecki, S. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

Smith, G.

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

Song, D. H.

St. John, D.

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

St. John, W.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Sutherland, R.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Sutherland, R. L.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Taheri, B.

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

Tang, C.-Y.

Tondiglia, V.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Tondiglia, V. P.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Tsai, M.-S.

Tsutsumi, O.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

van Sprang, H. A.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985).
[CrossRef]

Ventouris, G.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Voloschenko, D.

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

Wall, B.

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Wang, H.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

Watson, P.

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

Wu, C.-Y.

Wu, S.-T.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

Wu, T. X.

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

Xu, M.

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999).
[CrossRef]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

Yamaguchi, H.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
[CrossRef]

Yang, D.-K.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010).
[CrossRef]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol.2(1), 32–37 (2006).
[CrossRef]

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999).
[CrossRef]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Yaniv, Z.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Ying, S.

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

Yokoyama, H.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985).
[CrossRef]

Yoon, T. H.

Yoon, T.-H.

Yoshikawaa, K.

Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
[CrossRef]

Zumer, S.

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

Zyryanov, V. Y.

Adv. Mater. (1)

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater.16(16), 1453–1456 (2004).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000).
[CrossRef]

Appl. Phys. B (1)

Y. Huang, Y. S. Chih, and S. W. Ke, “Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell,” Appl. Phys. B86(1), 123–127 (2006).
[CrossRef]

Appl. Phys. Express (2)

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2, 112401 (2009).

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Displays (1)

Y. Koikea, A. Mochizukia, and K. Yoshikawaa, “Phase transition-type liquid-crystal projection display,” Displays10(2), 93–99 (1989).
[CrossRef]

Eur. Phys. J. E Soft Matter (1)

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur. Phys. J. E Soft Matter15(4), 413–419 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (5)

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys.85(11), 7511–7516 (1999).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys.98(1), 013516 (2005).
[CrossRef]

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal‐wall interface from director distortions at high fields,” J. Appl. Phys.57(10), 4520–4526 (1985).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. Disp. Technol. (1)

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol.2(1), 32–37 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6827–6830 (1999).
[CrossRef]

Liq. Cryst. (1)

Y. K. Fung, D.-K. Yang, S. Ying, L.-C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst.19(6), 797–801 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Proc. SPIE (3)

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color reflective displays,” Proc. SPIE4658, 7–13 (2002).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, H. Koerner, R. A. Vaia, and T. J. Bunning, “Tuning of a cholesteric filter having a negative dielectric anisotropy,” Proc. SPIE6654, 66540A (2007).

K. Lewis, G. Smith, I. Mason, and K. Rochester, “Design issues for tunable filters for optical telecommunications,” Proc. SPIE4679, 213–224 (2002).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (3)

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers27, 39–42 (1996).

J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos, “Fast frame rate bistable cholesteric texture reflective displays,” SID Int. Symp. Digest Tech. Papers29(1), 806–809 (1998).
[CrossRef]

A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers32(1), 460–463 (2001).
[CrossRef]

Solid State Commun. (1)

P. G. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun.6(3), 163–165 (1968).
[CrossRef]

Other (5)

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley -VCH, 1999), Chap. 4, p. 103.

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, Ltd. 2001), Chap. 3, pp. 98–99 (2001).

S. Shandrasekhar, Liquid Crystals (Cambridge University Press, 1992).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).

D.-K. Yang, L.-C. Chien, and Y. K. Fung, Liquid Crystals in Complex Geometries, G. P. Crawford and S. Zumer, eds. (Taylor & Francis, 1996), Chap. 1, pp. 103–142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Depending on the sign of the dielectric permittivity, the induced polarization (P) gives a dielectric torque to the molecules, turning the director respectively toward being parallel (a) or perpendicular (b) to the field direction.

Fig. 2
Fig. 2

Schematic diagram of the configuration of the cholesteric LC and the operating principle of the electrically switchable advanced DFCLC bistable light shutter for reversible transparent P and scattered FC state under low and high frequency applied field.

Fig. 3
Fig. 3

(a) Initial P texture at 0 volt, (b) DFCLC texture completely in FC state at low (1 kHz) frequency field of 30 volts, (c) stable FC texture at 0 V after removal of the field, (d) P texture at high frequency (50 kHz) field of 30 Vp-p, and (e) stable P texture in the field off state after removal of the high frequency field. All the POM textures are taken in transmissive mode under crossed polarizer at 200 X.

Fig. 4
Fig. 4

Reversible direct switching from P (a) to FC (b) state at 30 Vp-p under low (1 kHz) and high (50 kHz) frequency; (c) and (d) show the textures of stable P and FC state respectively at 0 V, taken after more than 100 hours in transmissive mode under crossed polarizer at 200 X.

Fig. 5
Fig. 5

Voltage dependent electro-optic transmittance of DFCLC cell at frequency 1 kHz and 50 kHz. The consequential microphotographs of the P, FC, and H textures in transmissive mode under crossed polarizer at 200X are shown in the inset.

Fig. 6
Fig. 6

Maximum transmittance of the light shutter in FC and P state at 0 volt, after switching the shutter by applying low (1 kHz) and high (50 kHz) frequency peak to peak voltages 20, 30 and 40 V.

Fig. 7
Fig. 7

Photographs of the bistable DFCLC light shutter in field off state in transparent P (a, c) and scattered FC (b, d) states. Both states can directly transit to one another by applying an electric field 3 Vp-p/µm at low (1 kHz) and high (50 kHz) frequency.

Fig. 8
Fig. 8

(a) Stable FC state at zero pressure (P0), (b) Transient P state at low pressure (P1), (c) P state at pressure (P2), and (d) P state relatively at higher pressure (P3). The micro textures are taken in transmissive mode under crossed polarizer at 200 X.

Fig. 9
Fig. 9

Bistable direct switching of homeotropic PI coated DFCLC light shutter between P (a) and FC (b) state, with an applied field 3 Vp-p/ µm and 4 Vp-p/µm at frequency 1 kHz and 50 kHz, respectively. Micro textures are taken in transmissive mode under crossed polarizer at 200 X.

Fig. 10
Fig. 10

(a, b) Macroscopic photographs of the bistable DFCLC light shutter with homeotropic PI layer in transparent P and scattered FC state under cross polarizer; (c, e) and (d, f) are the photographs of the bistable DFCLC light shutter in field off state in transparent P and scattered FC states, respectively.

Fig. 11
Fig. 11

Time resolved textures of the switching from P and FC state of the homeotropic PI coated bistable DFCLC light shutter with an applied voltage 30 Vp-p at frequency 1 kHz. Microscopic textures are taken in transmissive mode under cross polarizer at 200 X.

Fig. 12
Fig. 12

Time resolved textures of the switching from FC and P state of the homeotropic PI coated bistable DFCLC light shutter with an applied voltage 40 Vp-p at frequency 50 kHz. Microscopic textures are taken in transmissive mode under cross polarizer at 200 X.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ max =np
V c =( π 2 d/p) k 22 /Δε ε 0
or V c =[ π 2 d(HTP)×X] k 22 /Δε ε 0
CR = exp ( βd )

Metrics