Abstract

Tm3+/Ho3+ co-doped LiGd(MoO4)2 (LGM) crystals were investigated as gain media for the Ho3+ laser around 2.0 μm. Polarized spectroscopic parameters of Ho3+ ions in the crystals were calculated based on the absorption spectra by the Judd-Ofelt theory. Related fluorescence spectra and decay curves were measured and analyzed for the crystals with different Tm3+/Ho3+ co-doped concentrations, 5.4/1.4 and 4.6/0.6 at.%. Stimulated emission cross sections of the 5I75I8 transition of Ho3+ ions were derived according to the Füchtbauer-Ladenburg formula. End-pumped by a pulsed diode laser at 795 nm, the Ho3+ laser at 2.05 μm with a slope efficiency of 20% was realized in a c-cut crystal sample with the Tm3+/Ho3+ concentrations of 4.6/0.6 at.%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
    [CrossRef]
  2. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
    [CrossRef]
  3. B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
    [CrossRef]
  4. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 μm,” Opt. Lett.35(2), 172–174 (2010).
    [CrossRef] [PubMed]
  5. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B17(5), 723–728 (2000).
    [CrossRef]
  6. V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
    [CrossRef]
  7. G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 82–89 (1997).
    [CrossRef]
  8. A. Diening, B.-M. Dicks, E. Heumann, R. Groß, and G. Huber, “970 nm diode pumped Yb, Tm and Yb,Ho:YAG laser in the 2 μm spectral region,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 202–204.
  9. S. D. Jackson and S. Mossman, “Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-μm,” Appl. Opt.42(18), 3546–3549 (2003).
    [CrossRef] [PubMed]
  10. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett.35(18), 3027–3029 (2010).
    [CrossRef] [PubMed]
  11. C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
    [CrossRef]
  12. J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
    [CrossRef]
  13. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  14. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  15. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
    [CrossRef]
  16. W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
    [CrossRef]
  17. A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
    [CrossRef]
  18. M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
    [CrossRef]
  19. K. Rajnak and W. F. Krupke, “Energy levels of Ho3+ in LaCl3,” J. Chem. Phys.46(9), 3532–3542 (1967).
    [CrossRef]
  20. A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
    [CrossRef]
  21. M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
    [CrossRef]
  22. G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cim.28, 1–53 (2005).
  23. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
    [CrossRef]
  24. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
    [CrossRef]
  25. Z. Luo, Y. Huang, and X. Chen, Spectroscopy of Solid-State Laser and Luminescent Materials (Nova Science Publishers, New York, 2007).
  26. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
    [CrossRef]
  27. X. Han, F. Fusari, M. D. Serrano, A. A. Lagatsky, J. M. Cano-Torres, C. T. A. Brown, C. Zaldo, and W. Sibbett, “Continuous-wave laser operation of Tm and Hoco-doped NaY(WO4)2 and NaLu(WO4)2 crystals,” Opt. Express18(6), 5413–5419 (2010).
    [CrossRef] [PubMed]

2010 (4)

2009 (1)

B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

2008 (1)

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

2007 (1)

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

2005 (2)

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cim.28, 1–53 (2005).

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

2003 (1)

2002 (1)

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

2000 (2)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B17(5), 723–728 (2000).
[CrossRef]

1998 (2)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

1997 (1)

G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 82–89 (1997).
[CrossRef]

1996 (1)

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

1993 (2)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
[CrossRef]

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

1972 (2)

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

1967 (1)

K. Rajnak and W. F. Krupke, “Energy levels of Ho3+ in LaCl3,” J. Chem. Phys.46(9), 3532–3542 (1967).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Aguiló, M.

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
[CrossRef]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
[CrossRef]

Brown, C. T. A.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Budni, P. A.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Calvez, S.

Cano-Torres, J. M.

Cascales, C.

A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett.35(18), 3027–3029 (2010).
[CrossRef] [PubMed]

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Chen, Y.

J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

Chicklis, E. P.

Dawson, M. D.

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
[CrossRef]

Díaz, F.

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Donlan, V. L.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Ferrari, M.

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cim.28, 1–53 (2005).

Fusari, F.

Gong, X.

J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Guo, W.

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Gupta, J. A.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Han, X.

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Huang, J.

Huang, Y.

J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Jackson, S. D.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Kisel, V. E.

Krupke, W. F.

K. Rajnak and W. F. Krupke, “Energy levels of Ho3+ in LaCl3,” J. Chem. Phys.46(9), 3532–3542 (1967).
[CrossRef]

Kuleshov, N. V.

Kurilchik, S. V.

Kushawaha, V.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

Lagatsky, A. A.

Lemons, M. L.

Lin, Y.

J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Luo, Z.

J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, “Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal,” J. Opt. Soc. Am. B27(9), 1769–1777 (2010).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Major, L.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

Massons, J.

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Matsinger, B. H.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Mayer, A. A.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Méndez-Blas, A.

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Miller, C. A.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Mossman, S.

Mosto, J. R.

Nikonova, N. S.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
[CrossRef]

Pomeranz, L. A.

Provotorov, M. V.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Pujol, M. C.

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Rajnak, K.

K. Rajnak and W. F. Krupke, “Energy levels of Ho3+ in LaCl3,” J. Chem. Phys.46(9), 3532–3542 (1967).
[CrossRef]

Rico, M.

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Righini, G. C.

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cim.28, 1–53 (2005).

Rustad, G.

G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 82–89 (1997).
[CrossRef]

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
[CrossRef]

Sarkisov, S. E.

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Serrano, M. D.

Sibbett, W.

Stenersen, K.

G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 82–89 (1997).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Surratt, G. T.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Tang, J.

Volkov, V.

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

Walsh, B.

B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
[CrossRef]

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

Weber, M. J.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Yan, Y.

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

Zaldo, C.

X. Han, F. Fusari, M. D. Serrano, A. A. Lagatsky, J. M. Cano-Torres, C. T. A. Brown, C. Zaldo, and W. Sibbett, “Continuous-wave laser operation of Tm and Hoco-doped NaY(WO4)2 and NaLu(WO4)2 crystals,” Opt. Express18(6), 5413–5419 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett.35(18), 3027–3029 (2010).
[CrossRef] [PubMed]

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm,” Appl. Phys. B67(3), 283–288 (1998).
[CrossRef]

V. Kushawaha, Y. Chen, Y. Yan, and L. Major, “High-efficiency continuous-wave diode-pumped Tm:Ho:LuAG laser at 2.1 μm,” Appl. Phys. B62(1), 109–111 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron.38(1), 93–100 (2002).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 82–89 (1997).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser-radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens.31(1), 4–15 (1993).
[CrossRef]

J. Appl. Phys. (3)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83(5), 2772–2787 (1998).
[CrossRef]

W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008).
[CrossRef]

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys.73(7), 3149–3152 (1993).
[CrossRef]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

K. Rajnak and W. F. Krupke, “Energy levels of Ho3+ in LaCl3,” J. Chem. Phys.46(9), 3532–3542 (1967).
[CrossRef]

J. Lumin. (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin.90(1-2), 39–48 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,” Opt. Mater.27(11), 1672–1680 (2005).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B (1)

A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, and C. Cascales, “Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+ = Li,Na; X = W, Mo),” Phys. Rev. B75(17), 174208 (2007).
[CrossRef]

Phys. Status Solidi A (1)

A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A12(2), K73–K75 (1972).
[CrossRef]

Riv. Nuovo Cim. (1)

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cim.28, 1–53 (2005).

Other (2)

Z. Luo, Y. Huang, and X. Chen, Spectroscopy of Solid-State Laser and Luminescent Materials (Nova Science Publishers, New York, 2007).

A. Diening, B.-M. Dicks, E. Heumann, R. Groß, and G. Huber, “970 nm diode pumped Yb, Tm and Yb,Ho:YAG laser in the 2 μm spectral region,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 202–204.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of energy transfer from Tm3+ to Ho3+ ions and Yb3+ to Ho3+ ions.

Fig. 2
Fig. 2

Interference fringes for 4.6/0.6 TH crystal sample.

Fig. 3
Fig. 3

Polarized absorption spectra of 7.7/1.4 YH crystal in a range of 350−2200 nm.

Fig. 4
Fig. 4

Polarized absorption spectra of 4.6/0.6 TH crystal in a range of 750–850 nm.

Fig. 5
Fig. 5

Polarized fluorescence spectra of 7.7/1.4 YH (a) under excitation at 970 nm; 5.4/1.4 TH (b) and 4.6/0.6 TH (c) under excitation at 795 nm.

Fig. 6
Fig. 6

Fluorescence decay curves for the 3H4 multiplet of Tm3+ ions for 5.4/1.4 TH and 4.6/0.6 TH. The exciting and monitoring wavelengths are 783 and 810 nm, respectively.

Fig. 7
Fig. 7

Fluorescence decay curves for the 3F4 (5I7) multiplet of Tm3+ (Ho3+) ions for 5.4/1.4 TH and 4.6/0.6 TH. The exciting and monitoring wavelengths are 1700 (2000) and 1750 (2050) nm, respectively.

Fig. 8
Fig. 8

Fluorescence decay curve for the 5I7 multiplet of Ho3+ ions for 7.7/1.4 YH. The exciting and monitoring wavelengths are 2000 and 2050 nm, respectively.

Fig. 9
Fig. 9

Polarized emission cross sections for the 5I75I8 transition of Ho3+ ions derived by the F-L formula. The corresponding absorption cross sections for 5I85I7 transition are also plotted for comparison.

Fig. 10
Fig. 10

Polarized gain cross sections for 5I75I8 transition of Ho3+ ions in LGM crystal with different values of population inversion P (P = 0.3, 0.4, …, 0.7).

Fig. 11
Fig. 11

Average output power versus average absorbed pump power for a c-cut 4.6/0.6 TH laser at different output coupler transmissions.

Tables (3)

Tables Icon

Table 1 Mean wavelengths and experimental and calculated absorption oscillator strengths for ED transitions of Ho3+ in LGM crystal

Tables Icon

Table 2 J-O intensity parameters of Ho3+ in LGM crystal (in unit of 10−20 cm2)

Tables Icon

Table 3 Spontaneous transition rates, fluorescence branching ratios, and radiative lifetimes of Ho3+ in LGM crystal

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ EM q ( λ )= A q λ 5 I q ( λ ) 8πc n q 2 λ I q ( λ )dλ ,
σ G q ( λ )=P σ EM q ( λ )( 1P ) σ GSA q ( λ ).

Metrics