Abstract

We report on the development of an optically-pumped vertical external-cavity surface-emitting laser emitting near 1120 nm using strain compensated quantum wells. The development is motivated by the need to achieve narrow linewidth emission at ~280 nm via fourth harmonic generation, which is required to cool Mg+ ions. The gain mirror had a top-emitting geometry, was grown by molecular beam epitaxy and comprised GaInAs/GaAs quantum wells strain compensated by GaAsP layers; the strain compensation was instrumental for achieving a dislocation free epitaxial structure without dark lines. We demonstrate VECSEL operation at a fundamental wavelength close to 1118 nm with a linewidth of less than 300 kHz. Using a lithium triborate crystal we achieved frequency doubling to ~559 nm with an output power of 1.1W.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975).
    [CrossRef]
  2. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
    [CrossRef]
  3. M. Rahim, F. Felder, M. Fill, and H. Zogg, “Optically pumped 5 µm IV-VI VECSEL with Al-heat spreader,” Opt. Lett.33(24), 3010–3012 (2008).
    [CrossRef] [PubMed]
  4. A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-µm,” Opt. Express14(14), 6479–6484 (2006).
    [CrossRef] [PubMed]
  5. T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
    [CrossRef]
  6. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
    [CrossRef]
  7. T. Leinonen, S. Ranta, M. Tavast, M. Guina, and R. J. Epstein, “Narrow Linewidth 1120 nm Semiconductor Disk Laser Based on strain compensated GaInAs quantum wells,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.18.
  8. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett.33(15), 1705–1707 (2008).
    [CrossRef] [PubMed]
  9. J. Paul, Y. Kaneda, T. Wang, C. Lytle, J. Moloney, and J. Jones, “Precision Spectroscopy of Atomic Mercury in the Deep Ultraviolet Based on Fourth-Harmonic Generation from an Optically Pumped External-Cavity Semiconductor Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuS6.
  10. Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009).
    [CrossRef] [PubMed]
  11. S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
    [CrossRef]
  12. W. Alford, T. Raymond, and A. Allerman, “High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,” J. Opt. Soc. Am. B19(4), 663–666 (2002).
    [CrossRef]
  13. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
    [CrossRef]
  14. J. Jiménez, “Laser diode reliability: crystal defects and degradation modes,” C. R. Phys.4(6), 663–673 (2003).
    [CrossRef]
  15. S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
    [CrossRef]
  16. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
    [CrossRef]
  17. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
    [CrossRef]
  18. M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
    [CrossRef] [PubMed]
  19. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
    [CrossRef]

2011 (1)

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

2010 (1)

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

2009 (2)

Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009).
[CrossRef] [PubMed]

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

2008 (2)

2006 (2)

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-µm,” Opt. Express14(14), 6479–6484 (2006).
[CrossRef] [PubMed]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

2003 (1)

J. Jiménez, “Laser diode reliability: crystal defects and degradation modes,” C. R. Phys.4(6), 663–673 (2003).
[CrossRef]

2002 (1)

2000 (1)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

1999 (2)

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

1995 (1)

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

1992 (1)

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
[CrossRef]

1975 (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975).
[CrossRef]

Alford, W.

Allerman, A.

Andersson, T. G.

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
[CrossRef]

Batteiger, V.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Burns, D.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

Chatterjee, S.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Chernikov, A.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Dawson, M. D.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

Ekenstedt, M. J.

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
[CrossRef]

Fallahi, M.

Fan, L.

Felder, F.

Ferguson, A. I.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

Fill, M.

Fischer, M.

Forchel, A.

Guina, M.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-µm,” Opt. Express14(14), 6479–6484 (2006).
[CrossRef] [PubMed]

Hader, J.

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Hakkarainen, T.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

Hänsch, T. W.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975).
[CrossRef]

Härkönen, A.

Hastie, J. E.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

Herrmann, M.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Hessenius, C.

Holm, M. A.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

Honda, Y.

Hümmer, M.

Jiménez, J.

J. Jiménez, “Laser diode reliability: crystal defects and degradation modes,” C. R. Phys.4(6), 663–673 (2003).
[CrossRef]

Kaneda, Y.

Kemp, A. J.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

Kitaoka, Y.

Knünz, S.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Koch, S. W.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009).
[CrossRef] [PubMed]

Krysa, A. B.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

Kunert, B.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009).
[CrossRef] [PubMed]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Lehnhardt, T.

Leinonen, T.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

Li, L.

Liau, Z. L.

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

Liliental-Weber, Z.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Lindfors, J.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

Liu, X.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Miyazono, K.

Moloney, J. V.

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Mori, Y.

Morton, L. G.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

Müller, M.

Nishio, J.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Nishioka, M.

Okhotnikov, O.

Peyghambarian, N.

Prasad, A.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Rahim, M.

Ranta, S.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

Raymond, T.

Roberts, J. S.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

Rößner, K.

Saathoff, G.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Sasaki, T.

Schawlow, A. L.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975).
[CrossRef]

Shimatani, H.

Shimizu, Y.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Stoltz, W.

Stolz, W.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Tavast, M.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

Udem, Th.

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Walukiewicz, W.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Wang, S. M.

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
[CrossRef]

Wang, T. L.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

Weber, E. R.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Yarborough, J. M.

Yoshimura, M.

Zogg, H.

Appl. Phys. Lett. (4)

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006).
[CrossRef]

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992).
[CrossRef]

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995).
[CrossRef]

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

C. R. Phys. (1)

J. Jiménez, “Laser diode reliability: crystal defects and degradation modes,” C. R. Phys.4(6), 663–673 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999).
[CrossRef]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

J. Cryst. Growth (1)

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009).
[CrossRef] [PubMed]

Other (2)

J. Paul, Y. Kaneda, T. Wang, C. Lytle, J. Moloney, and J. Jones, “Precision Spectroscopy of Atomic Mercury in the Deep Ultraviolet Based on Fourth-Harmonic Generation from an Optically Pumped External-Cavity Semiconductor Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuS6.

T. Leinonen, S. Ranta, M. Tavast, M. Guina, and R. J. Epstein, “Narrow Linewidth 1120 nm Semiconductor Disk Laser Based on strain compensated GaInAs quantum wells,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The structure of the gain mirror.

Fig. 2
Fig. 2

Experimental and simulated (004) ω-2θ x-ray diffraction patterns. The fine structure pattern and the narrow diffraction peaks indicate a high crystalline quality.

Fig. 3
Fig. 3

Photoluminescence peak intensity from single-QW samples grown at different temperatures. The 370 °C and 565 °C data point were excluded from the figure since no emission was obtained at these temperatures using the available room temperature PL system.

Fig. 4
Fig. 4

Normalized surface photoluminescence (PL) and reflectance curves recorded from the gain mirror after growth. The dip in the reflectivity characteristic is caused by QW absorption.

Fig. 5
Fig. 5

Schematic showing the gain mirror attachment to the wedged diamond heat spreader and the diamond attachment to the copper mount with indium.

Fig. 6
Fig. 6

Cavity configuration for the narrow linewidth SHG experiment.

Fig. 7
Fig. 7

The cavity used for the narrow linewidth fundamental wavelength emission experiment.

Fig. 8
Fig. 8

Graphs recorded during the power conversion (a) and corresponding wavelength tuning (b).

Fig. 9
Fig. 9

Beat signal measured at 4.4 ms sweep time of the spectrum analyzer.

Metrics