Abstract

A method has been developed to prepare cobalt ferrite particle core polymer shell nanoparticles. These engineered nanoparticles can be further embedded into a polymer host matrix to develop highly transparent polymer based magneto-optic materials. A proof-of-principle all-optical magnetometer has been constructed based on the cobalt ferrite core polymer shell based nanocomposite material. A noise equivalent magnetic field sensitivity of 50nT/√Hz was observed using a 3μT 500Hz control magnetic field.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
    [CrossRef] [PubMed]
  2. J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
    [CrossRef]
  3. S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
    [CrossRef]
  4. A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
    [CrossRef]
  5. J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
    [CrossRef]
  6. F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
    [CrossRef]
  7. P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).
  8. http://www.hindsinstruments.com/wp-content/uploads/Polarimetry-Optical_Rotation.pdf
  9. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
    [CrossRef]
  10. http://www.ferroxcube.com/prod/assets/3b1.pdf
  11. M. N. Deeter, “Fiber-optic Faraday-effect magnetic-field sensor based on flux concentrators,” Appl. Opt.35(1), 154–157 (1996).
    [CrossRef] [PubMed]
  12. W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
    [CrossRef]
  13. E. L. Bronaugh, “Helmholtz coils for calibration of probes and sensors: limits of magnetic field accuracy and uniformity,” IEEE International Symposium on Electromagnetic Compatibility,1995. Symposium Record. 1995, pp.72–76, 14–18 Aug 1995 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=523521&isnumber=11452 .

2011 (1)

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

2010 (1)

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

2009 (3)

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

2008 (1)

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

2007 (1)

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
[CrossRef]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

2001 (1)

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

1996 (1)

Akiyama, T.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Charara, J.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Choueikani, F.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Deeter, M. N.

Eden, J. G.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
[CrossRef]

Foerier, S.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Gangopadhyay, P.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Gao, J.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
[CrossRef]

Greenlee, C.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

Griffith, W. C.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

Hafez, J. M.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
[CrossRef]

Himmelhuber, R.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

Jamon, D.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Jimenez-Martinez, R.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

Kitching, J.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

Knappe, S.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Lebedev, O. I.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Lopez-Santiago, A.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Moshchalkov, V. V.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Neveu, S.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Norwood, R. A.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Nozawa, T.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Persoons, A.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Peyghambarian, N.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Romalis, M. V.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Rousseau, J. J.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Royer, F.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Sato, E.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Sato, N.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Shah, V.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

Shimada, R.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Siblini, A.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

Takahashi, M.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Terai, K.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Thomas, J.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Tsuji-lio, S.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Tsutsui, H.

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Valev, V. K.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

van Tendeloo, G.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Vanacken, J.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Verbieat, T.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

Verbiest, T.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Voorakaranam, R.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Wouters, J.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

Yamada, H.

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett.94(2), 023502 (2009).
[CrossRef]

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (~0.5-300nT), low frequency (5-100Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett.90(13), 132502 (2007).
[CrossRef]

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett.94(5), 051113 (2009).
[CrossRef]

J. Appl. Phys. (1)

J. Wouters, O. I. Lebedev, G. van Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys.109(7), 076105 (2011).
[CrossRef]

J. Phys. Chem. C (1)

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112(21), 8032–8037 (2008).
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Nonlinear Optics and Quantum Optics (1)

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbieat, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Optics and Quantum Optics41, 87–104 (2010).

Rev. Sci. Instrum. (1)

S. Tsuji-lio, T. Akiyama, E. Sato, T. Nozawa, H. Tsutsui, R. Shimada, M. Takahashi, and K. Terai, “Fiberoptic heterodyne magnetic field sensor for long-pulsed fusion devices,” Rev. Sci. Instrum.72(1), 413–416 (2001).
[CrossRef]

Other (3)

http://www.hindsinstruments.com/wp-content/uploads/Polarimetry-Optical_Rotation.pdf

http://www.ferroxcube.com/prod/assets/3b1.pdf

E. L. Bronaugh, “Helmholtz coils for calibration of probes and sensors: limits of magnetic field accuracy and uniformity,” IEEE International Symposium on Electromagnetic Compatibility,1995. Symposium Record. 1995, pp.72–76, 14–18 Aug 1995 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=523521&isnumber=11452 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission electron microscope image of a collection of cobalt ferrite nanoparticles (A), a high resolution image of a single nanoparticle showing the crystalline nature of the particles (B) and a SAED pattern of the nanoparticles indexed to cobalt ferrite crystals in (C).

Fig. 2
Fig. 2

STEM image of the CoFe2O4 particle core PBMA shell composites in A. Inset: Higher magnification STEM images of the composite particles forming a chain.

Fig. 3
Fig. 3

XPS results of the Fe3O4 nanoparticles: A. High resolution O1s spectra shows a 3 component XPS spectra of Fe-O bond, the splitting of the O1s at 530eV indicates a new Fe-O bond formation after photoexcitation; B. Fe3O4 BMA mixture before (top) and after (bottom) PBMA shell formation, the new C1s peak at 283.2eV indicates a possible Fe-C bond formation due to photoexcitation.

Fig. 4
Fig. 4

Absorption spectra of 4wt% CoFe2O4 nanocomposite (a), transmission of a 170μm thick film on a LCD display (b), and street view transmission of a 100μm thick film(c).

Fig. 5
Fig. 5

Faraday rotation of CoFe2O4 nanocomposite at 980nm, inset: AC Faraday rotation for Verdet constant measurement at 980nm.

Fig. 6
Fig. 6

Magnetic flux density distribution in the vicinity of the MO polymer film (a), probe photograph showing the assembly of concentrators and MO film (b) and optical configuration schematic (c).

Fig. 7
Fig. 7

SNR, Bmin and sensitivity of the magnetometer as a function of measurement time constants in the absence and presence of magnetic flux concentrators. Solid lines correspond to performance with concentrators and dashed lines correspond to performance without concentrators.

Fig. 8
Fig. 8

Relative frequency response of the CoFeO based sensor. Inset: Fast Fourier transform of the magnetometer output signal waveform at 500Hz at 980 nm with a control magnetic field of 3μT.

Tables (1)

Tables Icon

Table 1 Verdet constant values of the 4 wt% CoFe2O4 nanocomposite at different wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B SN = 1 S e 2RP
S=VL

Metrics