Abstract

The development of hollow core photonic crystal fibers with low losses over a broad spectral region in the near IR enabled the demonstration of a novel laser type - Hollow-core Optical Fiber Gas Laser (HOFGLAS). The laser combines attractive features of fiber lasers such as compactness and long interaction length of pump and laser radiation with those of gas lasers such as the potential for high output power and narrow line width. This paper summarizes recent developments and describes the demonstration of C2H2 and HCN prototype lasers. Avenues to extend laser emission further into the IR are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
    [CrossRef]
  2. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  3. Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010).
    [CrossRef]
  4. A. A. Ionin, “Electric Discharge CO Lasers,” in Gas Lasers (CRC Press, 2007), pp. 201–237.
  5. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003).
    [CrossRef] [PubMed]
  6. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
    [CrossRef]
  7. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
    [CrossRef]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  10. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  11. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
    [CrossRef] [PubMed]
  12. F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
    [CrossRef]
  13. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
    [CrossRef] [PubMed]
  14. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  15. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
    [CrossRef] [PubMed]
  16. A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).
  17. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
    [CrossRef]
  18. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  19. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  20. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008).
    [CrossRef] [PubMed]
  21. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007).
    [CrossRef] [PubMed]
  22. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, 2001).
  23. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett.32(16), 2381–2383 (2007).
    [CrossRef] [PubMed]
  24. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009).
    [CrossRef] [PubMed]
  25. H. Többen, “Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass,” Electron. Lett.28(14), 1361–1362 (1992).
    [CrossRef]
  26. S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett.83(7), 1316–1318 (2003).
    [CrossRef]
  27. J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett.31(15), 1250–1251 (1995).
    [CrossRef]
  28. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
    [CrossRef]
  29. A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
    [CrossRef]
  30. J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
    [CrossRef]
  31. M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
    [CrossRef]
  32. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express18(17), 17865–17875 (2010).
    [CrossRef] [PubMed]
  33. B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron.15(10), 1108–1130 (1979).
    [CrossRef]
  34. R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
    [CrossRef]
  35. J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977).
    [CrossRef]
  36. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
    [CrossRef]
  37. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011).
    [CrossRef] [PubMed]
  38. HITRAN database, http://cfa-www.harvard.edu/HITRAN/
  39. GEISA, spectroscopic database, http://ether.ipsl.jussieu.fr/etherTypo/?id=1293&L=0
  40. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
    [CrossRef]
  41. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  42. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  43. A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
    [CrossRef]
  44. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000).
    [CrossRef]
  45. A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
    [CrossRef]
  46. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
    [CrossRef] [PubMed]
  47. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004).
    [CrossRef] [PubMed]
  48. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
    [CrossRef] [PubMed]
  49. M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
    [CrossRef]
  50. A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
    [CrossRef] [PubMed]
  51. K.-R. Sui, Y.-W. Shi, X.-L. Tang, X.-S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett.33(4), 318–320 (2008).
    [CrossRef] [PubMed]
  52. R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron.8(11), 838–843 (1972).
    [CrossRef]
  53. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  54. P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett.19(5), 132–134 (1971).
    [CrossRef]
  55. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
    [CrossRef]
  56. J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011).
    [CrossRef] [PubMed]
  57. A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
    [CrossRef]

2012

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

2011

2010

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express18(17), 17865–17875 (2010).
[CrossRef] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
[CrossRef]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

2009

2008

2007

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007).
[CrossRef] [PubMed]

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett.32(16), 2381–2383 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2006

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
[CrossRef]

2004

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004).
[CrossRef] [PubMed]

2003

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett.83(7), 1316–1318 (2003).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2000

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000).
[CrossRef]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1998

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

1996

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

1995

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett.31(15), 1250–1251 (1995).
[CrossRef]

1992

H. Többen, “Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass,” Electron. Lett.28(14), 1361–1362 (1992).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

1989

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

1979

B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron.15(10), 1108–1130 (1979).
[CrossRef]

1977

J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977).
[CrossRef]

1976

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

1972

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron.8(11), 838–843 (1972).
[CrossRef]

1971

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett.19(5), 132–134 (1971).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

1961

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

Abrams, R. L.

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron.8(11), 838–843 (1972).
[CrossRef]

Adam, J. L.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Albert, S.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Astapovich, M. S.

Barty, C. P.

Baumgart, B.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

Beach, R. J.

Benabid, F.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Bouwmans, G.

Brilland, L.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Broaddus, D. H.

Brown, A. J. W.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Buchwald, M. I.

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

Byer, R. L.

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

Campargue, A.

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

Campbell, N.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
[CrossRef]

A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
[CrossRef]

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Carraz, O.

F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Churbanov, M. F.

Clarkson, W. A.

Corwin, K. L.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Coulombier, Q.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Coy, S. L.

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Crowell, P. G.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Dawson, J. W.

Désévédavy, F.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Dianov, E. M.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
[CrossRef]

El Idrissi, M. I.

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Fetterman, H. R.

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

Fiedler, T.

Field, R. W.

J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Fourcade-Dutin, C.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

Freel, K.

J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011).
[CrossRef] [PubMed]

Gaeta, A. L.

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

Gilbert, S. L.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Haberberger, D.

Hager, G. D.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Han, J.

J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011).
[CrossRef] [PubMed]

Hand, D.

Hashida, M.

Hawkins, R. L.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

Heaven, M. C.

J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011).
[CrossRef] [PubMed]

Heebner, J. E.

Hensley, C.

Herbst, R. L.

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

Herman, M.

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

Houizot, P.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Ionin, A. A.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Iwai, K.

Jackson, S. D.

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett.83(7), 1316–1318 (2003).
[CrossRef]

Jain, R.

Jones, A. M.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Jones, C. R.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

Jones, J.

Joshi, C.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Kadel, R.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

Kalisky, O.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010).
[CrossRef]

Kalisky, Y.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010).
[CrossRef]

Kanz, V. K.

Kildal, H.

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

Klee, S.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

Klemperer, W.

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

Kletecka, C. S.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

Knabe, K.

Knight, J.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Knize, R. J.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
[CrossRef]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Koffend, J. B.

J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977).
[CrossRef]

Komashko, A.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
[CrossRef]

Kosolapov, A. F.

Krupke, W. F.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003).
[CrossRef] [PubMed]

Lampson, A. I.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Lehmann, K. K.

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

Levenson, M. D.

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

Light, P. S.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Lim, J.

Maki, A.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Mao, C.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Mccann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

McCord, J. E.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

McIver, J. K.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Mellau, G. Ch.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

Messerly, M. J.

Miyagi, M.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Murakami, M.

Nampoothiri, A. V. V.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Pax, P. H.

Payne, S. A.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Phipps, S. P.

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

Plotnichenko, V. G.

Pryamikov, A. D.

Quapp, W.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

Ratanavis, A.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
[CrossRef]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Renversez, G.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Richardson, D. J.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Rudolph, W.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
[CrossRef]

A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
[CrossRef]

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

Russell, P.

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Sakabe, S.

Schaffer, C. B.

Schlossberg, H. R.

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Schneider, J.

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett.31(15), 1250–1251 (1995).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Shephard, J.

Shi, Y.-W.

Shimizu, S.

Shiryaev, V. S.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Shverdin, M. Y.

Siders, C. W.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Smektala, F.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Smith, A. M.

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

Smith, P. W.

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett.19(5), 132–134 (1971).
[CrossRef]

Snitzer, E.

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

Snopatin, G. E.

Sridharan, A. K.

Stappaerts, E. A.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Sui, K.-R.

Swann, W. C.

Tang, X.-L.

Thapa, R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tillman, K. A.

Többen, H.

H. Többen, “Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass,” Electron. Lett.28(14), 1361–1362 (1992).
[CrossRef]

Tochitsky, S.

Tokita, S.

Traynor, N.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Troles, J.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Vander Auwera, J.

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Vasilief, I.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Wang, Y.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

Wang, Y. Y.

Washburn, B. R.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

Wellegehausen, B.

B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron.15(10), 1108–1130 (1979).
[CrossRef]

Wheeler, N.

Wheeler, N. V.

Wu, S.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

Zhdanov, B. V.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
[CrossRef]

Zhu, X.

Zhu, X.-S.

Zweiback, J.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
[CrossRef]

Appl. Phys. Lett.

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett.83(7), 1316–1318 (2003).
[CrossRef]

M. I. Buchwald, C. R. Jones, H. R. Fetterman, and H. R. Schlossberg, “Direct optically pumped multiwavelength CO2 laser,” Appl. Phys. Lett.29(5), 300–302 (1976).
[CrossRef]

R. L. Byer, R. L. Herbst, H. Kildal, and M. D. Levenson, “Optically pumped molecular iodine vapor-phase laser,” Appl. Phys. Lett.20(11), 463–466 (1972).
[CrossRef]

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett.19(5), 132–134 (1971).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Electron. Lett.

H. Többen, “Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass,” Electron. Lett.28(14), 1361–1362 (1992).
[CrossRef]

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett.31(15), 1250–1251 (1995).
[CrossRef]

IEEE J. Quantum Electron.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron.40(10), 1471–1477 (2004).
[CrossRef]

A. Ratanavis, N. Campbell, A. V. V. Nampoothiri, and W. Rudolph, “Performance and spectral tuning of optically overtone pumped molecular lasers,” IEEE J. Quantum Electron.45(5), 488–498 (2009).
[CrossRef]

J. E. McCord, A. A. Ionin, S. P. Phipps, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron.36(9), 1041–1052 (2000).
[CrossRef]

B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron.15(10), 1108–1130 (1979).
[CrossRef]

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron.8(11), 838–843 (1972).
[CrossRef]

J. Appl. Phys.

J. B. Koffend and R. W. Field, “cw optically pumped molecular iodine laser,” J. Appl. Phys.48(11), 4468–4472 (1977).
[CrossRef]

J. Chem. Phys.

J. Han, K. Freel, and M. C. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm-1,” J. Chem. Phys.135(24), 244304 (2011).
[CrossRef] [PubMed]

J. Mod. Opt.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

J. Mol. Spectrosc.

A. Maki, W. Quapp, S. Klee, G. Ch. Mellau, and S. Albert, “Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1.,” J. Mol. Spectrosc.180(2), 323–336 (1996).
[CrossRef] [PubMed]

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, “Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1,” J. Mol. Spectrosc.134(1), 134–153 (1989).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. Couny, F. Benabid, and O. Carraz, “Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating,” J. Opt. A, Pure Appl. Opt.9(2), 156–159 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Ref. Data

M. Herman, A. Campargue, M. I. El Idrissi, and J. Vander Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data32(3), 921–1361 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf.60(5), 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transf.48(5-6), 537–566 (1992).
[CrossRef]

Opt. Commun.

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun.283(6), 1075–1080 (2010).
[CrossRef]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun.260(2), 696–698 (2006).
[CrossRef]

Opt. Eng.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng.49(9), 091003 (2010).
[CrossRef]

Opt. Express

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express17(18), 16017–16026 (2009).
[CrossRef] [PubMed]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008).
[CrossRef] [PubMed]

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007).
[CrossRef] [PubMed]

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express18(17), 17865–17875 (2010).
[CrossRef] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express18(3), 1946–1951 (2010).
[CrossRef] [PubMed]

J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J. L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Phys. Rev. Lett.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett.99(14), 143903 (2007).
[CrossRef] [PubMed]

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Proc. SPIE

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE8237, 82373Y, 82373Y–10 (2012).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G–5 (2010).
[CrossRef]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE7580, 758001 (2010).

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

HITRAN database, http://cfa-www.harvard.edu/HITRAN/

GEISA, spectroscopic database, http://ether.ipsl.jussieu.fr/etherTypo/?id=1293&L=0

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

A. A. Ionin, “Electric Discharge CO Lasers,” in Gas Lasers (CRC Press, 2007), pp. 201–237.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Examples of laser emission from typical solid core fiber lasers with silica and fluorozirconate [2227] hosts, and possible emission wavelengths in gases. The latter can principally be used in HOFGLAS with already available silica based HC-PCF [18] and TeAsSe (TAS) chalcogenide glass fibers [35,36]. The horizontal bars indicate many individual narrow lines.

Fig. 2
Fig. 2

(a-c): Kagome fibers having hypocycloid core with 3 cladding rings and 7 cell defects with pitches of 18.75 μm, 20 μm, and 22.5 μm and core diameters of 85-93.75, 87.5 – 92.5, and 85-93.75 μm; (d-e): Kagome fibers with hypocycloid core structure having 1 cladding ring with pitches of 32 μm and 42 μm and core sizes of 58 μm and 64 μm respectively. (left) fiber loss vs wavelength in the near and mid-IR for 3 ring hypocycloid fibers (a)-(c). (Right top) Transmission of 1 ring Kagome hypocycloid core fibers in the near IR. For reference, the loss in 42 μm pitch fiber (red) is measured to be 5 dB/m at 1.50 μm wavelength. (Right bottom) mid-IR loss of 1 ring Kagome hypocycloid core fibers measured with the OPA. Error bars are generated from repeatability of 2 cut-backs of fiber length 0.8 and 2.0 m.

Fig. 3
Fig. 3

Schematic diagram of a HOFGLAS operating in the mid IR spectral region. HC-PCF: for example a Kagome circular core structured hollow core photonic crystal fiber of core diameter ~40 μm and cross section as shown, VC- vacuum chambers filled with active gas. D1, D2: detectors, F- germanium filter to separate residual pump from laser. W is an uncoated CaF2 window.

Fig. 4
Fig. 4

(a) Spectrum of a C2H2 (7 Torr) filled HOFGLAS and energy level diagram of C2H2 showing the observed lasing transitions. The group of horizontal lines for each vibrational state are to indicate the manifold of rotational states. P(J), R(J) refers to transitions J-1 → J and J + 1 → J respectively, where J is the rotational quantum number of the lower vibrational state. A 40-μm diameter Kagome fiber (23 μm pitch) with a length of 165 cm was used. The pump energy was 1.6 μJ and the OPO pump bandwidth was ~3.5 GHz. (b) Total laser pulse energy of a C2H2 HOFGLAS as a function of absorbed pump energy for two different fibers, see text, and selected gas pressures. The P(13) transition to the (v1 + v3) state was pumped with a 1-ns pulse.

Fig. 5
Fig. 5

(a) Laser pulse energy as a function of absorbed pump pulse energy for 33-cm long high-loss fiber ‘A’ filled with 19 torr of HCN gas, (b) maximum laser pulse energy as a function of absorbed pump pulse energy for various pressures of HCN gas contained in 45 cm long low-loss fiber ‘B’.

Fig. 6
Fig. 6

Propagation losses for silver (Ag) coated capillaries [from Eq. (1)] and calculated losses for a Kagome fiber [8,1012,42] as a function of wavelength. Possible pump and laser wavelengths for CO and CO2 active media are also indicated.

Fig. 7
Fig. 7

Experimental setup of an optically pumped mid-IR CO and CO2 capillary waveguide laser. VC- vacuum chambers filled with active gas, F- filter to suppress pump beam, W- uncoated CaF2 window, D- detector. The length of the capillary was 1.5 m.

Fig. 8
Fig. 8

(a) Observed lasing transitions from the optically pumped CO2 waveguide laser, and energy level diagram showing pump and lasing transitions. Solid red arrows indicate lasing transitions, dashed arrows indicate other possible transitions. The levels in square brackets denote Fermi resonant states, (b) CO2 waveguide laser energy as a function of absorbed pump energy at a pressure of 100 torr. The lasing threshold is about 40 μJ.

Fig. 9
Fig. 9

(a) Five-level energy diagram of C2H2 showing the pump transition, two possible laser transitions and rotational (kR) and vibrational (kV) relaxation rates that determine the total removal rate of population from the upper laser level. A total removal rate of ktot ~1.3 10−15 m−3s−1 [56] was used in the simulations and the fiber loss for the pump was neglected. (b) Schematic diagram of the sliced fiber, and calculated pump and laser pulse energies (normalized) as a function of the position in the fiber for two different pump pulse energies. The three bottom subplots show the calculated temporal evolution of pump (gray), laser (red), and depleted pump (black) pulses at three different positions in the fiber (5 ns pump pulse duration, 20 dB/m laser loss).

Fig. 10
Fig. 10

(a) Laser energy as a function of fiber length for 20dB/m and 5 dB/m losses at the laser wavelength and fiber diameters of 85 μm and 45 μm, respectively as predicted by the model. (b) Calculated laser energy as a function of the fiber length at different pressures in the low loss fiber. The incident pump energy was constant (30 μJ) and the pump pulse duration was 1 ns. The pump laser was in resonance with the P(13) transition.

Fig. 11
Fig. 11

Calculated pump energy at laser threshold and slope efficiency using the maximum absorbed energy from experiment as a function of gas pressure for a 1.46- m long fiber and 5 dB/m losses for the laser.

Tables (2)

Tables Icon

Table 1 Comparison of critical powers / intensities for limiting processes in solid-core and gas-filled hollow-core fibers

Tables Icon

Table 2 Candidate gas active media with pump and lasing parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= 1 2 ( 2.405 π ) 2 λ 2 a 3 Re( 1 2 n 2 +1 n 2 1 ),

Metrics