Abstract

Recent progress in three-dimensional sub-micron fabrication has rendered the introduction of waveguide structures into optical three-dimensional photonic bandgap materials possible. However, spectral tuning of the waveguide modes has not been demonstrated so far. Here, we use atomic-layer deposition of amorphous silica to tune the spectral position of an air-core defect waveguide in a three-dimensional silicon woodpile photonic crystal by 225 nm in wavelength. The measured spectral positions of the waveguide signature are in very good agreement with numerical calculations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
    [CrossRef]
  2. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
    [CrossRef]
  3. Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003).
    [CrossRef]
  4. A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
    [CrossRef] [PubMed]
  5. A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005).
    [CrossRef]
  6. B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. Spec. Top. Accel. Beams11, 011301 (2008).
    [CrossRef]
  7. I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
    [CrossRef]
  8. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
    [CrossRef]
  9. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
    [CrossRef]
  10. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
    [CrossRef]
  11. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
    [CrossRef]
  12. G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
    [CrossRef]
  13. G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
    [CrossRef]
  14. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
    [CrossRef]
  15. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
    [CrossRef]
  16. S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).
  17. Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005).
    [CrossRef]
  18. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
    [CrossRef] [PubMed]
  19. D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991).
    [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001).
    [CrossRef]
  21. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011).
    [CrossRef]

2012 (1)

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

2011 (4)

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011).
[CrossRef]

2010 (4)

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
[CrossRef]

G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
[CrossRef]

2009 (1)

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

2008 (2)

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
[CrossRef]

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. Spec. Top. Accel. Beams11, 011301 (2008).
[CrossRef]

2006 (1)

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

2005 (2)

Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005).
[CrossRef]

A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005).
[CrossRef]

2003 (2)

Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003).
[CrossRef]

A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
[CrossRef] [PubMed]

2001 (3)

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001).
[CrossRef]

1991 (1)

D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991).
[CrossRef]

Aoki, K.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Assefa, S.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Balet, L.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Bayindir, M.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Biswas, R.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Braun, P. V.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
[CrossRef]

Busch, K.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

Byer, R. L.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

Chen, C. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005).
[CrossRef]

A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
[CrossRef] [PubMed]

Colby, E.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

Cowan, B. M.

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. Spec. Top. Accel. Beams11, 011301 (2008).
[CrossRef]

Deubel, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Ehrlich, D. J.

D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991).
[CrossRef]

Essig, S.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

Fan, S.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

Figiel, J. J.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

Fiore, A.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Fischer, A. J.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
[CrossRef]

Francardi, M.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Frölich, A.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011).
[CrossRef]

García-Santamaría, F.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
[CrossRef]

Gerardino, A.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Green, W. M. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Guimard, D.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Herman, P. R.

Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005).
[CrossRef]

Hermatschweiler, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Ho, K. M.

Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003).
[CrossRef]

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Husko, C. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Ishida, S.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Ishizaki, K.

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
[CrossRef]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001).
[CrossRef]

John, S.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005).
[CrossRef]

A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
[CrossRef] [PubMed]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001).
[CrossRef]

Kawashima, S.

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
[CrossRef]

Kiravittaya, S.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Lee, H. S.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Lee, Y.-J.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
[CrossRef]

Li, L. H.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Li, Q.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

Li, Z.-Y.

Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003).
[CrossRef]

Lin, Y.

Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005).
[CrossRef]

McGuinness, C.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

Melngailis, J.

D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991).
[CrossRef]

Meric, I.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Noda, S.

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
[CrossRef]

Nomura, M.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Ozbay, E.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Ozin, G. A.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Pérez-Willard, F.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

Rastelli, A.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Rinne, S. A.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
[CrossRef]

Schmidt, O. G.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Shepard, K. L.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Sigalas, M. M.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Soukoulis, C. M.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Staude, I.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

Subramania, G.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
[CrossRef]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

Temelkuran, B.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Thiel, M.

Toader, O.

A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
[CrossRef] [PubMed]

Vlasov, Y. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

von Freymann, G.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Wang, G. T.

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

Wegener, M.

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

Wolff, C.

Wong, C. W.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

Adv. Mater. (3)

G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006).
[CrossRef]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).

Appl. Phys. Lett. (1)

D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991).
[CrossRef]

Appl. Phys. Lett. (2)

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010).
[CrossRef]

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009).
[CrossRef]

J. Appl. Phys. (1)

Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003).
[CrossRef]

Nano Lett. (1)

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011).
[CrossRef]

Nat. Photonics (1)

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008).
[CrossRef]

Opt. Express (3)

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010).
[CrossRef]

I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001).
[CrossRef]

Opt. Lett. (2)

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011).
[CrossRef]

Opt. Mater. Express (1)

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003).
[CrossRef] [PubMed]

Phys. Rev. B (3)

A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005).
[CrossRef]

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001).
[CrossRef]

Phys. Rev. Spec. Top. Accel. Beams (1)

B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. Spec. Top. Accel. Beams11, 011301 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Oblique-view electron micrograph of a FIB cross-section revealing two vertical waveguides within the silicon woodpile structure. (b) The same structure after complete infiltration by silica ALD. Silicon appears in dark gray, silica in light gray. White regions stem from electric charging effects. The arrow marks the position of the infiltration bottleneck in the woodpile structure. Note that the FIB cut plane and the corresponding woodpile lattice plane are slightly tilted with respect to each other. (c) Linear-optical transmittance spectrum for the woodpile waveguide structure before infiltration (data taken from Ref. [10]), and (d) for the completely silica filled structure.

Fig. 2
Fig. 2

(a), (b) Linear-optical reflectance spectra of the waveguide-containing silicon woodpile structure for linearly polarized incident light, measured after subsequent individual cycles of silica ALD. Spectra for subsequent cycles are offset by R = 0.2. The black dashed lines are guides to the eye, highlighting the respective experimental positions of the waveguide mode signature and the dielectric stop band edge. The insets indicate the respective directions in which the electric field of the linearly polarized incident light is oriented with respect to the topmost woodpile layer. (c) Visualization of the ideal woodpile waveguide structure after 6 cycles of silica ALD. Silicon is depicted in dark gray. The colors assigned to the different silica layers aim to connect this image to the experimental spectra shown in (a) and (b).

Fig. 3
Fig. 3

Calculated mid-band position of the degenerate waveguide mode (blue) and measured polarization-averaged waveguide signature positions found in the experiment (red) after each silica ALD cycle. After 6 cycles the host woodpile structure is completely infiltrated.

Metrics