Abstract

Anthracene dispersed in Polyphenylsiloxane (PPS) glass was synthesized on epitaxially grown zinc oxide (ZnO) to realize organic/inorganic hybrid semiconductors for efficient energy transfer. The photoluminescence (PL) from ZnO was modified by the presence of anthracene molecules due to resonant energy transfer. The UV-visible emission from anthracene molecule was also influenced due to resonant coupling with the excitonic and defect bound excitonic states in ZnO. Temperature dependence of PL of the hybrid system showed quenching of the defect bound emission of the ZnO to be due to energy transfer from anthracene. The PL lifetime in ZnO-anthracene/PPS hybrid structure at 4 K is relatively shorter and becomes comparable to the PL lifetimes in ZnO at 77 K. However, at room temperatures the PL lifetime of the hybrid structure is significantly longer than in ZnO and is comparable to the recombination lifetime in anthracene.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
    [CrossRef]
  2. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
    [CrossRef]
  3. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
    [CrossRef]
  4. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  5. R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
    [CrossRef]
  6. O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
    [CrossRef]
  7. R. J. Lacowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer-Verlag, 2006).
  8. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
    [CrossRef]
  9. J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
    [CrossRef]
  10. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  11. H. Morkoç and Ü. Özgür, Zinc Oxide (Wiley-VCH, 2009).
  12. T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010).
    [CrossRef]
  13. B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
    [CrossRef]
  14. B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
    [CrossRef]
  15. R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993).
    [CrossRef]
  16. Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
    [CrossRef]
  17. J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
    [CrossRef]
  18. A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
    [CrossRef]
  19. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
    [CrossRef]
  20. Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
    [CrossRef]
  21. M. Pope, “Charge-transfer exciton state, ionic energy levels, and delayed fluorescence in anthracene,” Mol. Cryst.4(1-4), 183–190 (1968).
    [CrossRef]

2012 (1)

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

2011 (2)

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010).
[CrossRef]

2009 (2)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

2007 (2)

Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
[CrossRef]

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

2006 (3)

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

2005 (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

2002 (2)

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

1994 (1)

V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
[CrossRef]

1993 (1)

R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993).
[CrossRef]

1968 (1)

M. Pope, “Charge-transfer exciton state, ionic energy levels, and delayed fluorescence in anthracene,” Mol. Cryst.4(1-4), 183–190 (1968).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
[CrossRef]

Ahn, Y. H.

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

Andelman, T.

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Atanasov, R.

V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
[CrossRef]

Aymonier, C.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Banerjee, S.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Bassani, F.

V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
[CrossRef]

Bhat, S.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Caillard, L.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

Chabal, Y. J.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

Chen, D. J.

Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
[CrossRef]

Chiles, C.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

Coltrin, M. E.

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

Crawford, M. H.

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

Das, R. K.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Dawson, M. D.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Del Guerzo, A.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Desvergne, J.-P.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Dierolf, V.

Dogan, S.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Everitt, H. O.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Fan, X. W.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Gong, Y.

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Gu, X.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Haneda, H.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Heliotis, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Itskos, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Katoh, R.

R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993).
[CrossRef]

Koh, K. H.

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

Kong, X. G.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Kotani, M.

R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993).
[CrossRef]

Koumoto, K.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Kuskovsky, I. L.

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Lee, C. T.

Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
[CrossRef]

Lee, S.

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

Liu, G.

Liu, J.

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

Liu, Y. C.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Loppinet-Serani, A.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Lu, Y. M.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Maitra, U.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Malko, A. V.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

Menaa, B.

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

Morkoç, H.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Murray, R.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Nause, J.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Nemeth, B.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Neumark, G. F.

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Nguyen, H. M.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

O’Brien, S.

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Ohashi, N.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Özgür, Ü.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Park, J.-Y.

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

Pope, M.

M. Pope, “Charge-transfer exciton state, ionic energy levels, and delayed fluorescence in anthracene,” Mol. Cryst.4(1-4), 183–190 (1968).
[CrossRef]

Poplawsky, J. D.

Raffy, G.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Saito, N.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Sakaguchi, I.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Seitz, O.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

Sekiguchi, T.

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Sharma, T. K.

T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010).
[CrossRef]

Shen, D. Z.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Simmons, J. A.

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

Takahashi, M.

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

Tansu, N.

Teke, A.

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Terech, P.

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

Tokuda, Y.

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

Towe, E.

T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010).
[CrossRef]

Tsao, J. Y.

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

Watson, I. M.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Xu, W.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Yoko, T.

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

Zhang, J.

Zhang, J. Y.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Zhang, X. T.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Zhang, Y.

Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
[CrossRef]

Zhao, H.

Zhi, Z. Z.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

Adv. Mater. (1)

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Adv. Mater. (1)

N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012).
[CrossRef]

T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010).
[CrossRef]

Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

J. Lumin. (1)

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002).
[CrossRef]

J. Mater. Chem. (1)

R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006).
[CrossRef]

Mater. Res. Bull. (1)

B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006).
[CrossRef]

Mol. Cryst. (1)

M. Pope, “Charge-transfer exciton state, ionic energy levels, and delayed fluorescence in anthracene,” Mol. Cryst.4(1-4), 183–190 (1968).
[CrossRef]

Nanoscale Res. Lett. (1)

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007).
[CrossRef]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004).
[CrossRef]

Proc. IEEE (1)

J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010).
[CrossRef]

Solid State Commun. (1)

V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994).
[CrossRef]

Other (2)

H. Morkoç and Ü. Özgür, Zinc Oxide (Wiley-VCH, 2009).

R. J. Lacowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer-Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of the hybrids structure used. (b) Transmittance and PL spectra of Anthracene/PPS and ZnO at room temperature.

Fig. 2
Fig. 2

Comparison of PL spectra of ZnO, anthracene/PPS, and the ZnO-anthracene/PPS hybrid at 15 K. The emission of ZnO at 2.21 eV is reduced significantly whereas the emission of ZnO at 3.37 eV is enhanced due to resonant energy transfer.

Fig. 3
Fig. 3

Schematics of energy levels for ZnO and anthracene in eV range.

Fig. 4
Fig. 4

(a) Temperature dependence photoluminescence spectra of ZnO (b) anthracene/PPS and (c) ZnO-anthracene/PPS hybrid structure.

Fig. 5
Fig. 5

Time-resolved PL measurement for ZnO, anthracene/PPS, and ZnO-anthracene/PPS hybrid structure at various temperature (a) 4 K, (b) 77 K, and (c) 300 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(T)= I 0 1+Aexp( E a k B T )

Metrics