Abstract

The structural distortions resulting from the size mismatch between the Eu2+ luminescent centre and the host Ba2+ cation as well as the electronic structure of BaAl2O4:Eu2+(,Dy3+) were studied using density functional theory (DFT) calculations and synchrotron radiation (SR) luminescence spectroscopy. The modified interionic distances as well as differences in the total energies indicate that Eu2+ prefers the smaller of the two possible Ba sites in the BaAl2O4 host. The calculated Eu2+ 4f7 and 4f65d1 ground level energies confirm that the excited electrons can reach easily the conduction band for subsequent trapping. In addition to the green luminescence, a weak blue emission band was observed in BaAl2O4:Eu2+,Dy3+ probably due to the creation of a new Ba2+ site due to the effect of water exposure on the host.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Murayama, “Luminous paints,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 789–792.
  2. A. Halperin, “Activated thermoluminescence (TL) dosimeters and related radiation detectors,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr. and L. Eyring, eds. (Elsevier, Amsterdam, The Netherlands, 2000), Vol. 28, pp. 187–310.
  3. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  4. E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin.72–74, 236–237 (1997).
    [CrossRef]
  5. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
    [CrossRef]
  6. R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
    [CrossRef]
  7. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
    [CrossRef]
  8. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  9. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
    [CrossRef]
  10. http://hasylab.desy.de/facilities/doris_iii/beamlines/i_superlumi (accessed on Dec. 15, 2011).
  11. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, in WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, User’s Guide, K. Schwarz, ed. (Vienna University of Technology, Vienna, 2010).
  12. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
    [CrossRef]
  13. I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
    [CrossRef] [PubMed]
  14. P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
    [CrossRef]
  15. W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem.451(1), 40–44 (1979).
    [CrossRef]
  16. D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer, Norwell, MA, USA, 1994), pp. 5–9.
  17. Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
    [CrossRef]
  18. J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
    [CrossRef]
  19. Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
    [CrossRef]
  20. G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
    [CrossRef]
  21. J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and T. Laamanen, M. Lastusaari, M. Malkamäki, and E. Welter are preparing a manuscript to be called “Local distortions in Eu2+ based luminescent materials.”
  22. Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
    [CrossRef]
  23. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
    [CrossRef]
  24. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express2(4), 382–390 (2012).
    [CrossRef]
  25. T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
    [CrossRef]
  26. J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
    [CrossRef]

2012

2011

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

2010

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

2009

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
[CrossRef]

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

2007

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

2006

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

2005

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

2003

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

1997

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
[CrossRef]

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin.72–74, 236–237 (1997).
[CrossRef]

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

1994

I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
[CrossRef] [PubMed]

1979

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem.451(1), 40–44 (1979).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Aitasalo, T.

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Anisimov, V. I.

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
[CrossRef]

I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
[CrossRef] [PubMed]

Aryasetiawan, F.

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
[CrossRef]

Batentschuk, M.

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Brito, H. F.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express2(4), 382–390 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Carvalho, C. A. A.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Chaput, L.

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

Dederichs, P. H.

I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
[CrossRef] [PubMed]

Dorenbos, P.

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

Felinto, M. C. F. C.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Fu, Z.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

Gorbenko, V.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Gourier, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Grinberg, M.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Hassinen, J.

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Hölsä, J.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express2(4), 382–390 (2012).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Hong, G.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Hörkner, W.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem.451(1), 40–44 (1979).
[CrossRef]

Jiao, H.

Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
[CrossRef]

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Kuklinski, B.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Kunes, J.

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Larsson, A. K.

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Lastusaari, M.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express2(4), 382–390 (2012).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Lichtenstein, A. I.

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
[CrossRef]

Liu, Y.

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Liu, Z.

Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
[CrossRef]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Malkamäki, M.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

Mochida, T.

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin.72–74, 236–237 (1997).
[CrossRef]

Müller-Buschbaum, H. K.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem.451(1), 40–44 (1979).
[CrossRef]

Nakazawa, E.

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin.72–74, 236–237 (1997).
[CrossRef]

Niittykoski, J.

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Novák, P.

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

Orobengoa, D.

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Osvet, A.

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Pan, T.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Peng, M.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Perez-Mato, J. M.

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Pickett, W. E.

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

Rodrigues, L. C. V.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express2(4), 382–390 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Schierning, G.

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Solovyev, I. V.

I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
[CrossRef] [PubMed]

Stefani, R.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Stiegelschmitt, A.

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Turos-Matysiak, R.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Winnacker, A.

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Withers, R. L.

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Wu, Q. L.

Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
[CrossRef]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

Zhang, S.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

Zhou, S.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

Zorenko, Y.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Acta Crystallogr. A

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

J. Lumin.

E. Nakazawa and T. Mochida, “Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping,” J. Lumin.72–74, 236–237 (1997).
[CrossRef]

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

J. Phys. Condens. Matter

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method,” J. Phys. Condens. Matter9(4), 767–808 (1997).
[CrossRef]

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

J. Rare Earths

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, and P. Novák, “Defect aggregates in the Sr2MgSi2O7 persistent luminescence material,” J. Rare Earths29(12), 1130–1136 (2011).
[CrossRef]

J. Solid State Chem.

Z. Fu, S. Zhou, T. Pan, and S. Zhang, “Band structure calculations on the monoclinic bulk and nano-SrAl2O4 crystals,” J. Solid State Chem.178(1), 230–233 (2005).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

Opt. Mater.

R. Stefani, L. C. V. Rodrigues, C. A. A. Carvalho, M. C. F. C. Felinto, H. F. Brito, M. Lastusaari, and J. Hölsä, “Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4:Eu2+,Dy3+) materials,” Opt. Mater.31(12), 1815–1818 (2009).
[CrossRef]

Opt. Mater. Express

Phys. Rev. B

I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, “Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb,” Phys. Rev. B50(23), 16861–16871 (1994).
[CrossRef] [PubMed]

J. M. Perez-Mato, R. L. Withers, A. K. Larsson, D. Orobengoa, and Y. Liu, “Distortion modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 and BaAl2O4,” Phys. Rev. B79(6), 064111 (2009).
[CrossRef]

Phys. Status Solidi B

P. Novák, J. Kunes, L. Chaput, and W. E. Pickett, “Exact exchange for correlated electrons,” Phys. Status Solidi B243(3), 563–572 (2006).
[CrossRef]

Phys. Status Solidi C

G. Schierning, M. Batentschuk, A. Osvet, A. Stiegelschmitt, and A. Winnacker, “The influence of lattice defects on fluorescence and phosphorescence in the europium aluminate EuAl2O4,” Phys. Status Solidi C2(1), 109–112 (2005).
[CrossRef]

Physica B

Q. L. Wu, Z. Liu, and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70),” Physica B404(16), 2499–2502 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Radiat. Meas.

Y. Zorenko, V. Gorbenko, M. Grinberg, R. Turos-Matysiak, and B. Kuklinski, “High-pressure luminescence spectroscopy of EuAl2O4 phosphor,” Radiat. Meas.42(4-5), 652–656 (2007).
[CrossRef]

Z. Anorg. Allg. Chem.

W. Hörkner and H. K. Müller-Buschbaum, “Zur Kristallstruktur von BaAl2O4,” Z. Anorg. Allg. Chem.451(1), 40–44 (1979).
[CrossRef]

Other

D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer, Norwell, MA, USA, 1994), pp. 5–9.

Y. Murayama, “Luminous paints,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 789–792.

A. Halperin, “Activated thermoluminescence (TL) dosimeters and related radiation detectors,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr. and L. Eyring, eds. (Elsevier, Amsterdam, The Netherlands, 2000), Vol. 28, pp. 187–310.

http://hasylab.desy.de/facilities/doris_iii/beamlines/i_superlumi (accessed on Dec. 15, 2011).

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, in WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, User’s Guide, K. Schwarz, ed. (Vienna University of Technology, Vienna, 2010).

J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and T. Laamanen, M. Lastusaari, M. Malkamäki, and E. Welter are preparing a manuscript to be called “Local distortions in Eu2+ based luminescent materials.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The hexagonal structure (space group P63) of BaAl2O4 consisting of Ba2+ ions situated within channels of AlO4 tetrahedra.

Fig. 2
Fig. 2

Environment of Eu2+ at the Ba1 (left) and Ba2 (right) site of the structure optimized BaAl2O4:Eu2+. The non-optimized ion positions are marked with dashed spheres.

Fig. 3
Fig. 3

Calculated (GGA method) density of states and the SR UV-VUV excitation spectrum (at 50 K, λem: 508 nm) of the non-doped and Eu2+ doped BaAl2O4, respectively (modified from [9]).

Fig. 4
Fig. 4

Dependence of the calculated (GGA+U method, U: 4.35-7.62 eV) density of states of the non-optimized BaAl2O4:Eu2+ (Eu2+ at the Ba1 site) on the Coulomb repulsion strength.

Fig. 5
Fig. 5

Calculated (GGA+U method, U: 7.62 eV) density of states of the optimized BaAl2O4 with Eu2+ at the Ba1 or Ba2 sites. Inset: Calculated density of the Eu2+ 4f65d1 states.

Fig. 6
Fig. 6

The synchrotron radiation excited (λexc: 92 nm) emission spectra of BaAl2O4:Eu2+,Dy3+ at selected temperatures between 20 and 300 K (SUPERLUMI, HASYLAB). Deconvoluted spectra at 20 K are indicated by dashed curves.

Fig. 7
Fig. 7

Energy of the green and blue emission bands of BaAl2O4:Eu2+,Dy3+ at selected temperatures between 20 and 300 K obtained from the deconvoluted emission spectra (λexc: 92 nm, SUPERLUMI, HASYLAB).

Fig. 8
Fig. 8

Persistent luminescence mechanism of BaAl2O4:Eu2+,R3+.

Tables (2)

Tables Icon

Table 1 Atomic Positions in the Original and Optimized Crystal Structure of BaAl2O4 with Eu2+ at Ba1 or Ba2 Site (Space Group in Calculation: P1, no. 1)

Tables Icon

Table 2 Distances Between Ba2+ (Eu2+) and the Nearest O2- Ions in the Original and Optimized Structure of BaAl2O4:Eu2+

Metrics