Abstract

The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and – perhaps deceivingly – it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the “persistent energy transfer” really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term “afterglow” should be retained for harmful, short persistent luminescence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Harvey, A History of luminescence: From the Earliest Times Until 1900 (Amer. Phil. Soc., Philadelphia, USA, 1957), Chapter VIII.
  2. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]
  3. P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+; Dy3+,” Phys. Status Solidi B242(1), R7–R9 (2005).
    [CrossRef]
  4. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
    [CrossRef]
  5. H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
    [CrossRef]
  6. R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
    [CrossRef]
  7. J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).
  8. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
    [CrossRef]
  9. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).
  10. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, Germany, 1994).
  11. D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003).
    [CrossRef]
  12. X. Wang and D. Jia, “Long persistent phosphors,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 793–818.
  13. International workshop on Persistent Phosphors (Phosphoros 2011) Sept 19 and 20, 2011, Universiteit Ghent, Ghent, Belgium, http://www.lumilab.ugent.be/?q=phosphoros (accessed on Dec. 30, 2011).
  14. M. R. Thompson, “Psychophysical evaluations of modulated color rendering for energy performance of LED-based architectural lighting,” PhD thesis (Massachusetts Institute of Technology, Cambridge, MA, USA, 2007).
  15. H. Rupp, Die Leuchtmassen und ihre Verwendung - eine Einführung in Fluoreszenz und Phosphoreszenz der festen Körper (Gebr. Bornträger, Berlin, Germany, 1937).
  16. Fortunius Licetus, Litheosphorus Sive de Lapide Bononiensi (Università di Bologna, Bologna, Italy, 1640).
  17. M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).
  18. V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).
  19. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997).
    [CrossRef]
  20. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  21. T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
    [CrossRef]
  22. Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
    [CrossRef]
  23. J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and A. J. J. Bos, P. Dorenbos, M. Lastusaari, T. Laamanen, and M. Malkamäki are preparing a manuscript to be called “Thermoluminescence and persistent luminescence excitation properties of Sr2MgSi2O7:Eu2+,Dy3+.”
  24. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).
  25. A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
    [CrossRef]
  26. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  27. W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
    [CrossRef]
  28. B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
    [PubMed]
  29. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
    [CrossRef]
  30. S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
    [CrossRef]
  31. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
    [CrossRef]
  32. Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
    [CrossRef]
  33. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).
  34. A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004).
    [CrossRef]
  35. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
    [CrossRef]
  36. P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
    [CrossRef]
  37. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).
  38. D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
    [CrossRef]
  39. T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
    [CrossRef]
  40. J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
    [CrossRef]
  41. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).
  42. T. Laamanen, “Defects in persistent luminescence materials,” PhD thesis (University of Turku, Turku, Finland, 2011).
  43. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
  44. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
    [CrossRef]
  45. J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and M. Lindström, A. Kotlov, T. Laamanen, M. Lastusaari, M. Malkamäki, H. F. Brito, L. C. V. Rodrigues, and E. Welter are preparing a manuscript to be called “Persistent luminescence of rare earth co-doped Sr3SiO5:Eu2+,R3+.”
  46. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
    [CrossRef] [PubMed]
  47. Eye spectral and intensity response, contrast sensitivity, TelescopeOptics.net, http://www.telescope-optics.net/eye_spectral_response.htm (accessed on Dec. 30, 2011).
  48. D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express18(25), 26293–26299 (2010).
    [CrossRef] [PubMed]
  49. J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).
  50. Y. Murayama, “Phosphorescent paints,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 789–792.

2012 (1)

2011 (5)

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

2010 (4)

B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
[PubMed]

R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express18(25), 26293–26299 (2010).
[CrossRef] [PubMed]

2009 (4)

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

2007 (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+; Dy3+,” Phys. Status Solidi B242(1), R7–R9 (2005).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

2004 (4)

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

2003 (1)

D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003).
[CrossRef]

2002 (2)

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
[CrossRef]

2001 (1)

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

1998 (1)

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

1997 (1)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

1889 (1)

V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).

Aitasalo, T.

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Berger, S.

R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
[CrossRef]

Bessière, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Bessodes, M.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Bettinelli, M.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Bos, A. J. J.

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

Botterman, J.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Brito, H. F.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).

Carlson, S.

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Carvalho, J. M.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Chen, D.

B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
[PubMed]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Dorenbos, P.

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+; Dy3+,” Phys. Status Solidi B242(1), R7–R9 (2005).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

Drozdowski, W.

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

Eskola, K. O.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Felinto, M. C. F. C.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Gourier, D.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Hahn, R.

R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
[CrossRef]

Hassinen, J.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Hölsä, J.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).

Jia, D.

D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003).
[CrossRef]

D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
[CrossRef]

Jia, W.

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Jungner, H.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Klatt, V.

V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Kotlov, A.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Kutty, T. R. N.

A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004).
[CrossRef]

Laamanen, T.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Lastusaari, M.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Lecointre, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Lenard, P.

V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).

Lin, T.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Lin, Y.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Liu, F.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef]

Liu, H.

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

Liu, M.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Lu, L.

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef]

Luo, X.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Maldiney, T.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Malkamäki, M.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Malta, O. L.

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nag, A.

A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004).
[CrossRef]

Nan, C. W.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Niittykoski, J.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Novák, P.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

Nunes, L. A. O.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

Pan, Z.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef]

Parkkinen, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Poelman, D.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express18(25), 26293–26299 (2010).
[CrossRef] [PubMed]

Qi, Z.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Richard, C.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Rodrigues, L. C. V.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Scherman, D.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Schmuki, P.

R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
[CrossRef]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Shi, C.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Smet, P.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Smet, P. F.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express18(25), 26293–26299 (2010).
[CrossRef] [PubMed]

Stefani, R.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Trojan-Piegza, J.

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

Valtonen, R.

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Van den Eeckhout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

van der Kolk, E.

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

van Duijvenvoorde, R. M.

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

Viana, B.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Wang, X.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Wang, X. J.

D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
[CrossRef]

Welter, E.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Xie, Y.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

Yen, W. M.

D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003).
[CrossRef]

D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
[CrossRef]

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

Yuan, H.

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

Zhang, B.

B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
[PubMed]

Zhang, J.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Zhang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Zhao, C.

B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
[PubMed]

Zhou, D.

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Zych, E.

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

D. Jia, X. J. Wang, and W. M. Yen, “Electron traps in Tb3+-doped CaAl2O4,” Chem. Phys. Lett.363(3-4), 241–244 (2002).
[CrossRef]

Electrochem. Soc. Interface (1)

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

Eur. J. Mineral. (1)

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: history’s first persistent luminescence material,” Eur. J. Mineral. (to be published).

J. Am. Chem. Soc. (1)

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

J. Electrochem. Soc. (3)

D. Jia and W. M. Yen, “Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4:Ce3+, a persistent phosphor,” J. Electrochem. Soc.150(3), H61–H65 (2003).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

J. Lumin. (4)

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72-74, 287–289 (1997).
[CrossRef]

A. J. J. Bos, R. M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, and P. Dorenbos, “Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors,” J. Lumin.131(7), 1465–1471 (2011).
[CrossRef]

W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Phosphorescent dynamics in SrAl2O4: Eu2+,Dy3+ single crystal fibers,” J. Lumin.76-77, 424–428 (1998).
[CrossRef]

J. Mater. Chem. (1)

J. M. Carvalho, L. C. V. Rodrigues, M. C. F. C. Felinto, L. A. O. Nunes, J. Hölsä, and H. F. Brito, “The role of titanium in the structurally and thermally tuneable luminescence of zirconia sol-gel nanomaterials,” J. Mater. Chem. (submitted).

J. Mater. Sci. Lett. (1)

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

J. Phys. Chem. B (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

J. Rare Earths (1)

T. Aitasalo, J. Hassinen, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and P. Novák, “Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Rare Earths27(4), 529–538 (2009).
[CrossRef]

J. Solid State Electrochem. (1)

R. Hahn, S. Berger, and P. Schmuki, “Bright visible luminescence of self-organized ZrO2 nanotubes,” J. Solid State Electrochem.14(2), 285–288 (2010).
[CrossRef]

J. Therm. Anal. Calorim. (1)

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

Luminescence (1)

B. Zhang, C. Zhao, and D. Chen, “Synthesis of the long-persistence phosphor CaAl2O4:Eu2+, Dy3+, Nd3+ by combustion method and its luminescent properties,” Luminescence25(1), 25–29 (2010).
[PubMed]

Mater. Res. Bull. (1)

A. Nag and T. R. N. Kutty, “The mechanism of long phosphorescence of SrAl2−xBxO4 (0<x<0.2) and Sr4Al14−xBxO25 (0.1<x<0.4) co-doped with Eu2+ and Dy3+,” Mater. Res. Bull.39(3), 331–342 (2004).
[CrossRef]

Materials (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Nat. Mater. (1)

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef]

Opt. Express (1)

Opt. Mater. (2)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen, “X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” Opt. Mater.31(12), 1877–1879 (2009).
[CrossRef]

Opt. Mater. Express (2)

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express (to be published).

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).

Phys. Rev. B (1)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. Smet, “Luminescence and X-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Phys. Status Solidi A (1)

Z. Qi, C. Shi, M. Liu, D. Zhou, X. Luo, J. Zhang, and Y. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors,” Phys. Status Solidi A201(14), 3109–3112 (2004).
[CrossRef]

Phys. Status Solidi B (1)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7: Eu2+; Dy3+,” Phys. Status Solidi B242(1), R7–R9 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Wied. Ann. (Ann. Phys. Chem. Neue Folge) (1)

V. Klatt and P. Lenard, “Über die Phosphoreszenzen des Kupfers Wismuths und Mangans in den Erdalkalisulfiden,” Wied. Ann. (Ann. Phys. Chem. Neue Folge)38, 90–107 (1889).

Other (15)

X. Wang and D. Jia, “Long persistent phosphors,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 793–818.

International workshop on Persistent Phosphors (Phosphoros 2011) Sept 19 and 20, 2011, Universiteit Ghent, Ghent, Belgium, http://www.lumilab.ugent.be/?q=phosphoros (accessed on Dec. 30, 2011).

M. R. Thompson, “Psychophysical evaluations of modulated color rendering for energy performance of LED-based architectural lighting,” PhD thesis (Massachusetts Institute of Technology, Cambridge, MA, USA, 2007).

H. Rupp, Die Leuchtmassen und ihre Verwendung - eine Einführung in Fluoreszenz und Phosphoreszenz der festen Körper (Gebr. Bornträger, Berlin, Germany, 1937).

Fortunius Licetus, Litheosphorus Sive de Lapide Bononiensi (Università di Bologna, Bologna, Italy, 1640).

E. N. Harvey, A History of luminescence: From the Earliest Times Until 1900 (Amer. Phil. Soc., Philadelphia, USA, 1957), Chapter VIII.

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, Germany, 1994).

J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and A. J. J. Bos, P. Dorenbos, M. Lastusaari, T. Laamanen, and M. Malkamäki are preparing a manuscript to be called “Thermoluminescence and persistent luminescence excitation properties of Sr2MgSi2O7:Eu2+,Dy3+.”

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).

J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).

Y. Murayama, “Phosphorescent paints,” in Phosphor Handbook, 2nd ed., S. Shionoya, W. M. Yen, and H. Yamamoto, eds. (CRC Press, Boca Raton, FL, USA, 2007), pp. 789–792.

J. Hölsä (Department of Chemistry, University of Turku, FI-20014 Turku, Finland) and M. Lindström, A. Kotlov, T. Laamanen, M. Lastusaari, M. Malkamäki, H. F. Brito, L. C. V. Rodrigues, and E. Welter are preparing a manuscript to be called “Persistent luminescence of rare earth co-doped Sr3SiO5:Eu2+,R3+.”

Eye spectral and intensity response, contrast sensitivity, TelescopeOptics.net, http://www.telescope-optics.net/eye_spectral_response.htm (accessed on Dec. 30, 2011).

T. Laamanen, “Defects in persistent luminescence materials,” PhD thesis (University of Turku, Turku, Finland, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A three-color persistent luminescence panel based on the Sr2MgSi2O7:Eu2+,Dy3+ (blue), SrAl2O4:Eu2+,Dy3+ (green) and Y2O2S:Eu3+,Mg2+,Ti (red) phosphors (modified from [24]).

Fig. 2
Fig. 2

One of the earliest proposed persistent luminescence mechanism for SrAl2O4:Eu2+,Dy3+. Note the unrealistic monovalent Eu+ species (redrawn from [27]).

Fig. 3
Fig. 3

An extreme example of the use of imagination in the construction of persistent luminescence mechanism: the Eu2+ and Dy3+ doped SrAl2−xBxO4 and Sr4Al14−xBxO25 materials (redrawn from [34]).

Fig. 4
Fig. 4

The experimental R2+ and R3+ (R: La-Lu) 4fn and 4fn-15d1 ground level energy positions in Sr2MgSi2O7 showing the possible electron (A) and hole (B) trapping mechanisms [42].

Fig. 5
Fig. 5

The model mechanism of persistent luminescence for the Eu2+ doped materials: Sr3SiO5:Eu2+,Nd3+ [45].

Fig. 6
Fig. 6

The spectral response of the human eye in bright (photopic) and dark (scotopic) illumination [47].

Metrics