Abstract

We report on the steady-state and optical modulation characteristics of a luminescence down-converting colloidal quantum dot/polyimide nanocomposite system suitable for integration with gallium nitride optoelectronics. The approach provides solution-processable and environmentally stable composite materials whose optical conversion and intrinsic modulation properties were evaluated at wavelengths from 535 to 624 nm. A nanocomposite for white-light generation upon excitation and mixing with 450-nm light was also obtained by blending colloidal quantum dots of different sizes in the same matrix. The forward external quantum efficiencies of the resulting nanocomposites were found to depend on the wavelength and can be as high as 33%. Optical modulation bandwidth above 25 MHz, which is an order of magnitude higher than for typical phosphor-based color-converters for GaN LEDs, and wavelength-converted data with an open-eye diagram at 25 Mb/s are demonstrated under external gallium nitride light-emitting diode excitation. These modulation characteristics are correlated with carrier lifetimes. This work provides guideline parameters and creates a possible path to integrated hybrid visible light sources for scientific and communications applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
    [CrossRef] [PubMed]
  2. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
    [CrossRef] [PubMed]
  3. S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009).
    [CrossRef]
  4. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
    [CrossRef]
  5. E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
    [CrossRef]
  6. F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
    [CrossRef] [PubMed]
  7. B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
    [CrossRef] [PubMed]
  8. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
    [CrossRef]
  9. M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009).
    [CrossRef] [PubMed]
  10. B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
    [CrossRef] [PubMed]
  11. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
    [CrossRef]
  12. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol.26(24), 3883–3892 (2008).
    [CrossRef]
  13. J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
    [CrossRef]
  14. J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
    [CrossRef]
  15. V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010).
    [CrossRef] [PubMed]
  16. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
    [CrossRef]
  17. C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
    [CrossRef]
  18. V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
    [CrossRef]
  19. http://www.mantechmaterials.com/products.asp
  20. C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
    [CrossRef]
  21. V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
    [CrossRef]
  22. S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009).
    [CrossRef]
  23. A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
    [CrossRef] [PubMed]
  24. U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer, 1997), Vol. 136.

2010 (4)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010).
[CrossRef] [PubMed]

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

2009 (7)

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009).
[CrossRef] [PubMed]

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009).
[CrossRef]

2008 (5)

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol.26(24), 3883–3892 (2008).
[CrossRef]

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
[CrossRef] [PubMed]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

2007 (1)

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

2005 (1)

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

2003 (1)

C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
[CrossRef]

Achermann, M.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Allan, G.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Bamberg, E.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Bawendi, M. G.

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

Bradley, M. S.

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Brauner, M.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Bulovic, V.

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Buttner, A.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Chanyawadee, S.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Charlton, M. D. B.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Chen, C.-H.

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

Chen, J.

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Chen, Y. J.

Choi, H. W.

C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
[CrossRef]

Comparelli, R.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Crawford, M. H.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Curri, M. L.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Dawson, M. D.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009).
[CrossRef] [PubMed]

B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
[CrossRef] [PubMed]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
[CrossRef]

Deisseroth, K.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Delerue, C.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Demir, H. V.

S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009).
[CrossRef]

S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009).
[CrossRef]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

Elfström, D.

Girkin, J. M.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Gong, Z.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009).
[CrossRef] [PubMed]

Gottschalk, A.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Green, R. P.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

Grubor, J.

Gu, E.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

M. Wu, Z. Gong, A. J. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Opt. Express17(19), 16436–16443 (2009).
[CrossRef] [PubMed]

B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
[CrossRef] [PubMed]

Guilhabert, B.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
[CrossRef] [PubMed]

Halpert, J. E.

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Harley, R. T.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Heliotis, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

Henderson, R. K.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Huang, H. W.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Husaini, S.

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

Ingrosso, C.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Itskos, G.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

Jeon, C. W.

C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
[CrossRef]

Jin, S. R.

Kanibolotsky, A. L.

Kay, K.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Kelly, A. E.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

Kim, J. K.

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

Klimov, V. I.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Koleske, D. D.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Kuehne, A. J.

Lagoudakis, P. G.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Lai, W.-C.

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

Langer, K.-D.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol.26(24), 3883–3892 (2008).
[CrossRef]

Liewald, J. F.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Lin, C.-H.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Lin, G.-R.

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

Lodahl, P.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Luberto, M.

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

Luo, H.

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

Mackintosh, A. R.

Massoubre, D.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. Guilhabert, D. Elfström, A. J. Kuehne, D. Massoubre, H. X. Zhang, S. R. Jin, A. R. Mackintosh, E. Gu, R. A. Pethrick, and M. D. Dawson, “Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes,” Opt. Express16(23), 18933–18941 (2008).
[CrossRef] [PubMed]

McKendry, J.

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Menon, V. M.

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

Muir, K. R.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Murray, R.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

Nagel, G.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Nerreter, S.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Nizamoglu, S.

S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009).
[CrossRef]

S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009).
[CrossRef]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

Panniello, A.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Panzer, M. J.

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Perepichka, I. F.

Pethrick, R. A.

Petruska, M. A.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Rae, B. R.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Randel, S.

Renshaw, D.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

Schubert, E. F.

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

Sheu, J.-K.

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

Shi, J.-W.

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

Skabara, P. J.

Striccoli, M.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Talapin, D. V.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

Valappil, N.

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

van Driel, A. F.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Vos, W. L.

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Vucic, J.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Walewski, J. W.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband Information Broadcasting Using LED-Based Interior Lighting,” J. Lightwave Technol.26(24), 3883–3892 (2008).
[CrossRef]

Wang, L.-P.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Watson, I. M.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

Watzke, N.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Wood, P. G.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Wood, V.

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Wu, M.

Xi, J.-Q.

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

Zhang, F.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Zhang, H. X.

Adv. Mater. (Deerfield Beach Fla.) (3)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010).
[CrossRef] [PubMed]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,” Adv. Mater. (Deerfield Beach Fla.)18(3), 334–338 (2006).
[CrossRef]

V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot–Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2151–2155 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

S. Nizamoglu and H. V. Demir, “Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting,” Appl. Phys. Lett.95(15), 151111 (2009).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008).
[CrossRef]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

IEEE Electron Device Lett. (1)

J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-speed GaN-based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett.29(2), 158–160 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett.22(18), 1346–1348 (2010).
[CrossRef]

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

C. W. Jeon, H. W. Choi, and M. D. Dawson, “Fabrication of Matrix-Addressable InGaN-Based Microdisplays of High Array Density,” IEEE Photon. Technol. Lett.15(11), 1516–1518 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Nizamoglu and H. V. Demir, “Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes,” J. Appl. Phys.105(8), 083112 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Materials (1)

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication,” Materials3(2), 1316–1352 (2010).
[CrossRef]

Nano Lett. (1)

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006).
[CrossRef] [PubMed]

Nano Rev (1)

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202–5208 (2010).
[CrossRef] [PubMed]

Nature (1)

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446(7136), 633–639 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, “Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states,” Phys. Rev. Lett.95(23), 236804 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” Proc. SPIE7224, 72240Q (2009).
[CrossRef]

Rep. Prog. Phys. (1)

E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys.69(12), 3069–3099 (2006).
[CrossRef]

Sensors (Basel) (1)

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors (Basel)9(11), 9255–9274 (2009).
[CrossRef] [PubMed]

Other (2)

http://www.mantechmaterials.com/products.asp

U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer, 1997), Vol. 136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission spectrum of a 20-µm thick sample of C-XLS polyimide. This polymeric material is used as the host matrix for the colloidal quantum dot-based nanocomposites studied in this work. The thick coloured lines represent the spectral regions corresponding to the emission of the CQDs used in the nanocomposites.

Fig. 2
Fig. 2

(a) Normalised photoluminescence spectra of the nanocomposite samples. Single-color samples are labeled after their peak emission wavelengths while Mix refers to the composite incorporating different sizes of CQDs. (b) Superposed emission spectra of 8.7 nm-diameter CQDs dissolved in toluene, in THF and in the solid polyimide matrix.

Fig. 3
Fig. 3

White-light CQD nanocomposite emission spectrum evolution with LED excitation level determined by the driving voltage. The contribution around 450 nm is from non-absorbed LED light while the longer wavelength contribution is the light down-converted by the nanocomposite. The chromaticity coordinates do not significantly vary and are around (0.32, 0.34).

Fig. 4
Fig. 4

Frequency response of the nanocomposite samples. The optical excitation was made using a 450-nm micro-LED.

Fig. 5
Fig. 5

Fit of the samples’ electrical responses versus frequency.

Fig. 6
Fig. 6

Effective carrier lifetimes of the nanocomposites. Close-squares represent single-wavelength composite values obtained via the frequency modulation responses. Open squares are values obtained with the time-gated microsystem. Values for the white-mix are represented by triangles (open: time-gated system value).

Fig. 7
Fig. 7

Plot of the exciton radiative decay ratio versus wavelength (i.e. for all the nanocomposites) as given by Eqs. (4) and (5).

Fig. 8
Fig. 8

Eye diagram at 25 Mb/s measured by optically modulating the white-light nanocomposites. The LED light at 450 nm was filtered out so the modulation characteristic is the result of the color-converted emission only.

Tables (1)

Tables Icon

Table 1 CQD Ratio and External Conversion Efficiency for All Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η= X nano A X LED λ e λ p
M(f)= 1 1+ 2 f 2 τ mean 2
f co = 3 τ mean
Ratio  =  R sample R 535nm
R sample  =  τ mean η 1

Metrics