Abstract

Structural, optical, and spectroscopic properties of novel Tm3+:Lu2O3 ceramics are studied. The average grain size is determined to be ~0.54-0.56 μm. The absorption spectra show good opportunities for diode pumping at 796 nm and 811 nm. The ceramics have high mid-IR transmittance of up to 7 μm. Strong luminescence lines are measured at 1942 nm, 1965 nm, and 2066 nm. CW laser operation at 2066 nm with an output power of up to 26 W and a slope efficiency of 42% is obtained. Q-switched operation with a pulse duration of 100-150 ns and a repetition rate of 5-10 kHz is achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
    [CrossRef]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.
  3. B. M. Walsh, “Review of Tm and Ho Materials: Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
    [CrossRef]
  4. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  5. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
    [CrossRef] [PubMed]
  6. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
    [CrossRef]
  7. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long Wavelength Laser Operation of Tm:Sc2O3 at 2116 nm and Beyond,” in Conference “Advanced Solid-State Photonics 2011” (Istanbul, Turkey, 2011), paper ATuA5.
  8. V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
    [CrossRef]
  9. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).
  10. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Status Solidi A202(1), R1–R3 (2005).
    [CrossRef]
  11. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
    [CrossRef]
  12. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
    [CrossRef] [PubMed]
  13. M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
    [CrossRef] [PubMed]
  15. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011).
    [CrossRef] [PubMed]
  16. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express19(4), 3604–3611 (2011).
    [CrossRef] [PubMed]
  17. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
    [CrossRef]
  18. A. Zinoviev, R. Soulard, O. Antipov, R. Moncorge, and E. Ivakin, “Dynamics of Refractive Index Changes in Tm-doped Crystals Tm:YAG and Tm:YLF, and Ceramics Tm:Lu2O3,” in Conference on Lasers and Electro-Optics/Europe-2011 (22–26 May 2011, Munich, Germany), paper CA.P.22.
  19. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1984), p. 121.
  20. O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
    [CrossRef]

2011

2009

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

B. M. Walsh, “Review of Tm and Ho Materials: Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

2008

2006

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

2005

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Status Solidi A202(1), R1–R3 (2005).
[CrossRef]

2004

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
[CrossRef]

2001

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

1997

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

1982

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Aggarwal, I.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Baker, C.

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Bisson, J.-F.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Dettmar, D.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Dubinskii, M.

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Fischer, R. X.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Frantz, J.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Fuhrberg, P.

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Hosokawa, S.

Huber, G.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

Hunt, M.

Ikesue, A.

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express19(4), 3604–3611 (2011).
[CrossRef] [PubMed]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Kaminskii, A. A.

Kim, W.

Koopmann, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

Lamrini, S.

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
[CrossRef]

Lutz, A.

Medenbach, O.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Merkle, L. D.

Messing, G. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Michael, A.

Miklos, F.

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Newburgh, G. A.

Noriyuki, M.

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Petermann, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Sadowski, B.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Sanghera, J.

Scholle, K.

Shannon, R. D.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Shaw, B.

Shirakawa, A.

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Taira, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Takaichi, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Status Solidi A202(1), R1–R3 (2005).
[CrossRef]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).

Tokurakawa, M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Status Solidi A202(1), R1–R3 (2005).
[CrossRef]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).

Ueda, K.-I.

Villalobos, G.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho Materials: Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Word-Daniels, A.

Yagi, H.

Yanagitani, T.

Yen, W. M.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Annu. Rev. Mater. Res.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Appl. Phys. B

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

IEEE J. Quantum Electron.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

J. Alloy. Comp.

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloy. Comp.380(1-2), 61–70 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small-prism technique,” J. Opt. A, Pure Appl. Opt.3(3), 174–177 (2001).
[CrossRef]

Laser Phys.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, “Scalable Ceramic Lasers,” Laser Phys.15(7), 927–939 (2005).

B. M. Walsh, “Review of Tm and Ho Materials: Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi A

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics – a novel gain material for high-power solid-state lasers,” Phys. Status Solidi A202(1), R1–R3 (2005).
[CrossRef]

Other

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long Wavelength Laser Operation of Tm:Sc2O3 at 2116 nm and Beyond,” in Conference “Advanced Solid-State Photonics 2011” (Istanbul, Turkey, 2011), paper ATuA5.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

A. Zinoviev, R. Soulard, O. Antipov, R. Moncorge, and E. Ivakin, “Dynamics of Refractive Index Changes in Tm-doped Crystals Tm:YAG and Tm:YLF, and Ceramics Tm:Lu2O3,” in Conference on Lasers and Electro-Optics/Europe-2011 (22–26 May 2011, Munich, Germany), paper CA.P.22.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1984), p. 121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of a Tm:Lu2O3 ceramic disc (a); structure of the Tm:Lu2O3 ceramics recorded using a JSM - 6490 scanning electron microscope (magnification x104) (b), and a 3-dimensional AFM-image of the ceramic surface after etching (c).

Fig. 2
Fig. 2

Absorption cross-section of Tm:Lu2O3 ceramics and corresponding transition lines (a), and the absorption in the near 800-nm pump band (red line) in comparison with the absorption of the Tm:Lu2O3 crystal (blue dotted line shows results published in [2,5]) (b).

Fig. 3
Fig. 3

Emission cross section of Tm:Lu2O3 ceramics (red curve) and Tm:Lu2O3 crystal (blue curve, data from [2]).

Fig. 4
Fig. 4

Schematic of a Tm: Lu2O3 ceramic laser pumped at 811 nm with a cavity formed by two mirrors (M1,2); an acousto-optic modulator (AOM) was used to obtain the Q-switched oscillation.

Fig. 5
Fig. 5

Output power at 2066 nm (solid lines) and slope efficiency (dashed lines are β-spline approximations) of the ceramic laser with a plane output coupler (Toc = 6%) versus double-pass absorbed power of the pump at 811 nm for different lengths (8.4, 10.3 and 11.6 mm) of the Tm:Lu2O3 rod.

Fig. 6
Fig. 6

The spectrum of a Tm:Lu2O3 ceramic laser (based on 10.3-mm rod) in CW regime.

Fig. 7
Fig. 7

Temporal shape of the laser pulse in the Q-switched regime.

Metrics