Abstract

Al(Ga)InP subwavelength structures (SWS) were fabricated and optimized through thermally dewetted Au nanotemplate and ICP pattern-transfer. When λ< 900 nm, most AlGaInP nanostructures exhibit the reflectivity of less than 2% and insensitive to the incident angle up to 45°. When λ extends to 1800 nm, the reflectivity of less than 5% over 0°-45° is achieved in the optimized nanostructure, which benefits III-V multi-junction solar cells to improve their efficiency. Moreover, not only is such cost-effective nano-fabrication process completely compatible with the other processing of III-V solar cells, but their defined disordered SWS benefit the antireflection performance over broadband and wide view according to the comparison between the measurement and simulation results from AlGaInP SWS.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
    [CrossRef]
  2. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
    [CrossRef]
  3. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
    [CrossRef]
  4. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
    [CrossRef]
  5. M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
    [CrossRef]
  6. C. H. Henry, “Limitation efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
    [CrossRef]
  7. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
    [CrossRef]
  8. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  9. Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
    [CrossRef] [PubMed]
  10. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
    [CrossRef]
  11. C. H. Chiu, P. C. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008).
    [CrossRef] [PubMed]
  12. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
    [CrossRef]
  13. Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).
  14. J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
    [CrossRef]
  15. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009).
    [CrossRef] [PubMed]
  16. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
    [CrossRef]
  17. J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011).
    [CrossRef]
  18. S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [CrossRef]
  19. R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
    [CrossRef]

2011

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011).
[CrossRef]

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

2010

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

2009

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

2008

2007

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

2001

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

1994

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

1987

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

1982

S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

1980

C. H. Henry, “Limitation efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

Aho, A.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Aiken, D.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Bertness, K. A.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Bett, A. W.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Cape, J. A.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Chang, Y. C.

Chen, C. C.

Cheng, Y. J.

Chhajed, S.

Chiu, C. H.

Cho, B.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Choi, E. S.

Cornfeld, A.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Dimroth, F.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Dong, H. P.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Dong, J. R.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Fraas, L. M.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Friedman, D. J.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Guina, M.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Guter, W.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Henry, C. H.

C. H. Henry, “Limitation efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

Hsu, S. H.

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Jia, F.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Kang, J.-J.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Kibbler, A. E.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Kim, J.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Kim, J. K.

Kim, K.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Koh, K.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Kontio, J. M.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Kramer, C.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Kuo, H. C.

Kurtz, S. R.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Kuryla, M. S.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Lee, Y.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Lee, Y. T.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Leem, J. W.

J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Ley, V.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Li, H. B.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Li, Y.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Li, Y. F.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Lu, T. C.

Mcleod, P. S.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Mont, F. W.

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Na, H.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Niemi, T.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Oliva, E.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Olson, J. M.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

Partain, L. D.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Patel, P.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Polojarvi, V.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Poxson, D. J.

Ransom, R. A.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Salmi, J.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Schone, J.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Schramm, A.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

Shao, B.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

Sharps, P.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Siefer, G.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Song, Y. M.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Stan, M.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Steiner, M.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Sun, Z. Q.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Tommila, J.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Tukiainen, A.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Turtiainen, A.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Varghese, T.

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Viheriala, J.

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Wang, S. C.

Wang, Z. H.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Weiss, R. E.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Xu, W. Q.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Yang, B.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Yang, H.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Yu, J. S.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Yu, P. C.

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Zhang, J. C.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

Zhang, J. H.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Zhang, L.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Zhang, R. Y.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

Zhu, S. J.

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Adv. Mater.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009).
[CrossRef]

Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).

Appl. Phys. Lett.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994).
[CrossRef]

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

J. Appl. Phys.

L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987).
[CrossRef]

C. H. Henry, “Limitation efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011).
[CrossRef]

J. Cryst. Growth

M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010).
[CrossRef]

Nanoscale Res. Lett.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Opt. Acta (Lond.)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Opt. Express

Sol. Energy Mater. Sol. Cells

J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Thin Solid Films

J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematically diagram of Al(Ga)InP subwavelength antireflection structure fabrication through thermally dewetted Au mask and ICP etching.

Fig. 2
Fig. 2

The morphology of Au nanoparticles after thermally dewetted Au/SiN/Al(Ga)InP/GaAs structure at 500°C and 100 s.(a) top view of Au/SiN(100 nm) (b) top view of Au/SiN(50 nm) (c) side view of Au/SiN(100 nm) (d) side view of Au/SiN(50 nm).

Fig. 3
Fig. 3

Scanning electron microscope image of Al(Ga)InP SWS defined by ICP etching 3 min.

Fig. 4
Fig. 4

Reflection performance of the above fabricated Al(Ga)InP subwavelength structure.

Fig. 5
Fig. 5

Al(Ga)InP subwavelength structure profile etched by reaction gas (a) Cl2/N2/Ar = 10/15/3.5; (b) Cl2/N2/Ar = 10/15/4; (c) the specular reflectivity of the above two types of samples.

Fig. 6
Fig. 6

Al(Ga)InP subwavelength structure profile etched through the optimized recipe, but different time (a) t = 3 min; (b) t = 5 min.

Fig. 7
Fig. 7

The specular reflection spectra measured over wide view for the samples etched (a) t = 3 min and (b) t = 5 min.

Fig. 8
Fig. 8

The measured and simulated reflection spectra comparison for Al(Ga)InP SWS as shown in Fig. 6(b); (a) incident angle is 8°, (b) incident angle is 45°.

Metrics