Abstract

We investigated the suitability of three ternary tellurite glass families for use as optical fibre materials. Systematically varied compositions were produced and the scalability of the glass volumes was assessed. Detailed thermal analysis was conducted to provide justification for the observed billet scaling results. Compositional trends in the linear and nonlinear refractive indices were measured and correlated to structural information gained from measured Raman spectra. Physical mechanisms are suggested to explain the observed trends. Finally we explore the suitability of these glasses for optical fibre fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
    [CrossRef]
  2. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glasses,” Opt. Lett.30, 1156–1158 (2005).
    [CrossRef] [PubMed]
  3. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A yb3+/tm3+/ho3+ triply-doped tellurite fibre laser,” Opt. Express16, 10690–10695 (2008).
    [CrossRef] [PubMed]
  4. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17, 16716–16721 (2009).
    [CrossRef] [PubMed]
  5. M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: Erbium doped lanthanum-tellurite glass,” Opt. Express17, 15578–15584 (2009).
    [CrossRef] [PubMed]
  6. A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.
  7. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
    [CrossRef] [PubMed]
  8. Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.
  9. J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
    [CrossRef]
  10. T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
    [CrossRef]
  11. J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.
  12. R. A. H. El-Mallawany, Tellurite Glasses Handbook Physical Properites and Data (CRC Press LLC, 2002).
  13. V. S. GmbH, “Infrared chalcogenide glass IG5” (2009).
  14. H. Onodera, I. Awai, and J. Ikenoue, “Refractive-index measurement of bulk materials: prism coupling method,” Appl. Opt.22, 1194–1197 (1983).
    [CrossRef] [PubMed]
  15. Deepika and N. S. Saxena, “Thermodynamics of glass/crystal transformation in Se58Ge42–xPbx (9 ≤ x ≤ 20) glasses,” J. Phys. Chem. B114, 28–35 (2010).
    [CrossRef]
  16. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press Inc., 1994).
  17. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res.36, 467–495 (2006).
    [CrossRef]
  18. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” App. Phys. Lett.5, 17–19 (1964).
    [CrossRef]
  19. C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B2, 2045–2048 (1970).
    [CrossRef]
  20. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
    [CrossRef]
  21. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
    [CrossRef]
  22. A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
    [CrossRef]
  23. O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
    [CrossRef]
  24. H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
    [CrossRef]
  25. E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
    [CrossRef]
  26. S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
    [CrossRef]
  27. A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
    [CrossRef]
  28. X. Feng, A. Mairaj, D. Hewak, and T. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol.23, 2046–2054 (2005).
    [CrossRef]
  29. V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249, 160–179 (1999).
    [CrossRef]
  30. M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
    [CrossRef]
  31. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
    [CrossRef]

2010

Deepika and N. S. Saxena, “Thermodynamics of glass/crystal transformation in Se58Ge42–xPbx (9 ≤ x ≤ 20) glasses,” J. Phys. Chem. B114, 28–35 (2010).
[CrossRef]

2009

2008

2007

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

2006

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

2005

2004

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

2003

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

2000

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

1999

V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249, 160–179 (1999).
[CrossRef]

1996

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

1994

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
[CrossRef]

1993

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

1992

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

1990

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

1989

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

1983

1970

C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B2, 2045–2048 (1970).
[CrossRef]

1964

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” App. Phys. Lett.5, 17–19 (1964).
[CrossRef]

Aizawa, T.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Awai, I.

Berthereau, A.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Biaggio, I.

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Binks, D.

Bookey, H.

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Brocklesby, W. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Burger, H.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Bushong, E. J.

Canioni, L.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Champarnaud, J.-C.

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Champarnaud-Mesjard, J. C.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Champarnaud-Mesjard, J.-C.

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

Chaudhari, C.

Churbanov, M. F.

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Deepika,

Deepika and N. S. Saxena, “Thermodynamics of glass/crystal transformation in Se58Ge42–xPbx (9 ≤ x ≤ 20) glasses,” J. Phys. Chem. B114, 28–35 (2010).
[CrossRef]

Deol, R. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Dianov, E. M.

Dimitrov, V.

V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249, 160–179 (1999).
[CrossRef]

Ducasse, A.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Ducasse, L.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Ebendorff-Heidepriem, H.

El-Mallawany, R. A. H.

R. A. H. El-Mallawany, Tellurite Glasses Handbook Physical Properites and Data (CRC Press LLC, 2002).

Fargin, E.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Feng, X.

Flem, G. L.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Foo, T.

Frit, B.

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

GmbH, V. S.

V. S. GmbH, “Infrared chalcogenide glass IG5” (2009).

Grishin, I. A.

Guintrand, C.

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Haeffner, D. R.

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

Hanna, D. C.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Hewak, D.

Hill, C.

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Hishita, S.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Hobert, H.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Ide, H.

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

Ikenoue, J.

Inoue, S.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Jha, A.

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A yb3+/tm3+/ho3+ triply-doped tellurite fibre laser,” Opt. Express16, 10690–10695 (2008).
[CrossRef] [PubMed]

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Jiang, X.

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Kar, A.

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Kneipp, K.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Koltashev, V. V.

Komatsu, T.

V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249, 160–179 (1999).
[CrossRef]

Konishi, T.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Kozhukharov, V.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Li, Y.

Liao, M.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
[CrossRef] [PubMed]

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

Lin, A.

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17, 16716–16721 (2009).
[CrossRef] [PubMed]

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Lincoln, J. R.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Lousteau, J.

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A yb3+/tm3+/ho3+ triply-doped tellurite fibre laser,” Opt. Express16, 10690–10695 (2008).
[CrossRef] [PubMed]

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

Mackechnie, C. J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Mairaj, A.

McLaughlin, J. C.

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

Merle-Méjean, T.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Merle-Mjean, T.

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” App. Phys. Lett.5, 17–19 (1964).
[CrossRef]

Mirgorodsky, A.

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Mirgorodsky, A. P.

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Mochida, N.

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

Monro, T.

Monro, T. M.

Neov, S.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Nishida, T.

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

Noguera, O.

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Oermann, M. R.

Ohishi, Y.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
[CrossRef] [PubMed]

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

Ohtsuka, A.

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

Onodera, H.

Payne, D. N.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Pearson, A.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Plotnichenko, V. G.

Qin, G.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
[CrossRef] [PubMed]

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

Ramme, M.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Richards, B.

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Ryasnyanskiy, A.

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Sarger, L.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Saxena, N. S.

Deepika and N. S. Saxena, “Thermodynamics of glass/crystal transformation in Se58Ge42–xPbx (9 ≤ x ≤ 20) glasses,” J. Phys. Chem. B114, 28–35 (2010).
[CrossRef]

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Segonds, P.

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

Sekiya, T.

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

Shastri, S. D.

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

Smirnov, M.

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
[CrossRef]

Sokolov, V. O.

Soulis, M.

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

Stegeman, G.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Stegeman, R.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Stolen, R.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Suehara, S.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Suzuki, T.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
[CrossRef] [PubMed]

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

Tagg, S. L.

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

Takashima, Y.

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

Thomas, P.

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Tikhomirov, V. K.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

Todoroki, S.

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

Tonokawa, M.

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

Toulouse, J.

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17, 16716–16721 (2009).
[CrossRef] [PubMed]

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Tropper, A. C.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Tsang, Y.

Varshneya, A. K.

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press Inc., 1994).

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
[CrossRef]

Vogel, W.

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

Wang, C. C.

C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B2, 2045–2048 (1970).
[CrossRef]

Wang, J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
[CrossRef]

Yamada, M.

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

Yan, X.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17, 15481–15490 (2009).
[CrossRef] [PubMed]

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

Zhang, A.

Zwanziger, J. W.

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

Ann. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

App. Phys. Lett.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” App. Phys. Lett.5, 17–19 (1964).
[CrossRef]

Appl. Opt.

J. Am. Ceram. Soc.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc.90, 1448–1457 (2007).
[CrossRef]

J. Appl. Phys.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with tm3+,” J. Appl. Phys.73, 8066–8075 (1993).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci.

T. Nishida, M. Yamada, H. Ide, and Y. Takashima, “Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses,” J. Mater. Sci.25, 3546–3550 (1990). .
[CrossRef]

J. Non-Cryst. Solids

V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249, 160–179 (1999).
[CrossRef]

J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, and S. D. Shastri, “The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study,” J. Non-Cryst. Solids274, 1–8 (2000). Physics of Non-Crystalline Solids 9.
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses,” J. Non-Cryst. Solids144, 128–144 (1992).
[CrossRef]

O. Noguera, T. Merle-Mjean, A. Mirgorodsky, M. Smirnov, P. Thomas, and J.-C. Champarnaud-Mesjard, “Vibrational and structural properties of glass and crystalline phases of teo2,” J. Non-Cryst. Solids330, 50–60 (2003).
[CrossRef]

H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids151, 134–142 (1992).
[CrossRef]

E. Fargin, A. Berthereau, T. Cardinal, G. L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids203, 96–101 (1996). Optical and Electrical Propertias of Glasses.
[CrossRef]

J. Phys. Chem. B

Deepika and N. S. Saxena, “Thermodynamics of glass/crystal transformation in Se58Ge42–xPbx (9 ≤ x ≤ 20) glasses,” J. Phys. Chem. B114, 28–35 (2010).
[CrossRef]

J. Phys. Chem. Solids

A. Mirgorodsky, T. Merle-Mjean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases,” J. Phys. Chem. Solids61, 501–509 (2000).
[CrossRef]

Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, “Normal vibrations of two polymorphic forms of TeO2 crystals and assignment of Raman peaks of pure TeO2 glass,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi97, 1435–1440 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994).
[CrossRef]

Phys. Rev. B

C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B2, 2045–2048 (1970).
[CrossRef]

S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Méjean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue, “Localized hyperpolarizability approach to the origin of nonlinear optical properties in Teo2-based materials,” Phys. Rev. B70, 205121 (2004).
[CrossRef]

A. P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Mjean, and M. Smirnov, “Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses,” Phys. Rev. B73, 1–13 (2006).
[CrossRef]

Other

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press Inc., 1994).

J. Lousteau, H. Bookey, X. Jiang, C. Hill, A. Kar, and A. Jha, “Fabrication of multicore tellurite glass optical fibres,” in Transparent Optical Networks, 2007. ICTON ’07. 9th International Conference on, vol. 2 (2007), Vol. 2, pp. 305–308.

R. A. H. El-Mallawany, Tellurite Glasses Handbook Physical Properites and Data (CRC Press LLC, 2002).

V. S. GmbH, “Infrared chalcogenide glass IG5” (2009).

Y. Ohishi, G. Qin, M. Liao, X. Yan, and T. Suzuki, “Recent progress in tellurite fibers,” in “Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),” (2010), pp. 1–3.

A. Ryasnyanskiy, A. Lin, C. Guintrand, I. Biaggio, and J. Toulouse, “Tunable nonlinear frequency conversion of bismuth-tellurite glass holey fiber,” Optical Fibre Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental set up for measuring the coefficient of thermal expansion.

Fig. 2
Fig. 2

Experimental configuration for the Z-scan measurement. The sample is translated along the optic axis through the focal plane. The beam splitter allows for simultaneous measurement of the closed and open apertures, detectors 1 and 2 respectively.

Fig. 3
Fig. 3

Measured DSC curves with the transition temperatures Tg, crystallisation onset temperatures Tx and crystallisation peak temperatures Tc indicated.

Fig. 4
Fig. 4

(a) Crystallisation stability ΔT=Tg–Tx and (b) Enthalpy of crystallisation as a function of modifier concentration. Dashed lines are to guide the eye.

Fig. 5
Fig. 5

Variation of the coefficient of thermal expansion as a function of modifier concentration. Dashed lines are to guide the eye.

Fig. 6
Fig. 6

(a) Variation of refractive index with modifier concentration. (b) Variation of nonlinear refractive index with modifier concentration. Dashed lines are to guide the eye.

Fig. 7
Fig. 7

Ball and stick representation of the structural units present in tellurite glass. Left: Trigonal bipyramidal TeO4. Center: Distorted trigonal bipyramidal TeO3+1. Right: Trigonal pryamidal TeO3. Dots represent nonbonding electrons. Bond lengths (in nm) are taken from [24].

Fig. 8
Fig. 8

Example of a deconvolved Raman spectrum (sample TZN2). Raw data (black), Raman bands denoted A,B,C,D and E (red, blue, magenta, green and cyan) and reconstructed spectrum (grey).

Fig. 9
Fig. 9

Relative Raman band intensities for various modifier concentrations. (a) TMN glasses (b) TZN glasses and (c) TBN glasses. Dashed lines are to guide the eye.

Tables (3)

Tables Icon

Table 1 Fabricated Glass Compositions1

Tables Icon

Table 2 Measured Values for the Linear Refractive Index n0, Nonlinear Refractive Index n2, Glass Relaxation Temperature Tg, Crystallisation Onset Temperature Tx, Crystallisation Stability ΔT, ΔHc, Enthalpy of Crystallisation and Coefficient of Thermal Expansion α

Tables Icon

Table 3 Raman Band Assignment to Structural Subunits and Nomenclature

Metrics