Abstract

We demonstrate environmentally protected delivery of high-power femtosecond mid-IR pulses in a single-mode ZBLAN fiber by soliton formation. A 70-fs Cr:ZnS laser at 2.4 µm reaches this regime already at ~2 nJ launched pulse energy, while a 110-fs pulse can be transmitted without visible shortening over meters of fiber. We also measured the nonlinear-optical coefficient of ZBLAN as n2 = 2.7 ± 0.2 × 10−16 cm2/W at 2.4 µm wavelength.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express15(25), 16540–16545 (2007).
    [CrossRef] [PubMed]
  2. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
    [CrossRef]
  3. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper PDPA10.
  4. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36(12), 2275–2277 (2011).
    [CrossRef] [PubMed]
  5. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008), Chap. 3.
  6. L. V. Doronina, I. V. Fedotov, A. A. Voronin, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, E. Rostova, A. B. Fedotov, and A. M. Zheltikov, “Tailoring the soliton output of a photonic crystal fiber for enhanced two-photon excited luminescence response from fluorescent protein biomarkers and neuron activity reporters,” Opt. Lett.34(21), 3373–3375 (2009).
    [CrossRef] [PubMed]
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  8. E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
    [CrossRef]
  9. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A81(3), 033840 (2010).
    [CrossRef] [PubMed]
  10. R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).
  11. E. Sorokin, N. Tolstik, and I. Sorokina, “Femtosecond operation and self-doubling of Cr:ZnS laser,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NThC1.
  12. E. Sorokin, N. Tolstik, and I. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW5A.5.
  13. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012).
    [CrossRef]
  14. J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci.19(1), 21–41 (1989).
    [CrossRef]
  15. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).
  16. X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B29(2), 238–243 (2012).
    [CrossRef]
  17. D. Klimentov, N. Tolstik, V. Dvoyrin, V. Kalashnikov, and I. Sorokina, “Broadband dispersion measurement of ZBLAN, germanate and silica fibers in MidIR,” J. Lightwave Technol.30, 1943–1947 (2012).
  18. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989–2006).
  19. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in European Conference on Lasers and Electro-Optics (CLEO®/Europe-IQEC), Munich, Germany, Technical Digest (CD) (2009), paper CF1.3.
  20. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Energy scaling of mid-infrared femtosecond oscillators,” in Advanced Solid-State Photonics Conference, Technical Digest (CD) (Optical Society of America, 2007), paper WE7.

2012 (3)

2011 (1)

2010 (2)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A81(3), 033840 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (1)

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

1991 (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).

1989 (1)

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci.19(1), 21–41 (1989).
[CrossRef]

1988 (1)

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

1980 (1)

E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
[CrossRef]

Agger, C.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Anokhin, K. V.

Bang, O.

Bass, M.

E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
[CrossRef]

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Bonner, R. F.

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Doronina, L. V.

Dupont, S.

Dvoyrin, V.

Fedotov, A. B.

Fedotov, I. V.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Garmire, E.

E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
[CrossRef]

Guelachvili, G.

Hänsch, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Ivashkina, O. I.

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Kalashnikov, V.

Kalashnikov, V. L.

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A81(3), 033840 (2010).
[CrossRef] [PubMed]

Keiding, S. R.

Kito, C.

Klimentov, D.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Krol, D. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).

Leon, M. B.

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Levin, K.

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Liao, M.

Lyngsø, J. K.

Mandon, J.

McMahon, T.

E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
[CrossRef]

Miyoshi, S.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Ohishi, Y.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Parker, J. M.

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci.19(1), 21–41 (1989).
[CrossRef]

Pervosti, L. G.

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Petersen, C.

Picqué, N.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express15(25), 16540–16545 (2007).
[CrossRef] [PubMed]

Rostova, E.

Schunemann, P. G.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Sorokin, E.

Sorokina, I.

D. Klimentov, N. Tolstik, V. Dvoyrin, V. Kalashnikov, and I. Sorokina, “Broadband dispersion measurement of ZBLAN, germanate and silica fibers in MidIR,” J. Lightwave Technol.30, 1943–1947 (2012).

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Sorokina, I. T.

Steffensen, H.

Suzuki, T.

Thøgersen, J.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Thomsen, C. L.

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

Tolstik, N.

Tran, D. T.

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Vodopyanov, K. L.

Vogel, E. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).

Voronin, A. A.

Weber, M. J.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).

Yan, X.

Zheltikov, A. M.

Zots, M. A.

Annu. Rev. Mater. Sci. (1)

J. M. Parker, “Fluoride glasses,” Annu. Rev. Mater. Sci.19(1), 21–41 (1989).
[CrossRef]

Appl. Phys. B (1)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B100(1), 3–8 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-guides for high power transmission,” IEEE J. Quantum Electron.16(1), 23–32 (1980).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Glasses (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses32, 231–254 (1991).

Phys. Rev. A (1)

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A81(3), 033840 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. F. Bonner, L. G. Pervosti, M. B. Leon, K. Levin, and D. T. Tran, “New source for laser angioplasty: Er:YAG laser pulses transmitted through zirconium fluoride optical fiber catheters,” Proc. SPIE906, 288–293 (1988).

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other (7)

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper PDPA10.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008), Chap. 3.

E. Sorokin, N. Tolstik, and I. Sorokina, “Femtosecond operation and self-doubling of Cr:ZnS laser,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NThC1.

E. Sorokin, N. Tolstik, and I. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW5A.5.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989–2006).

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in European Conference on Lasers and Electro-Optics (CLEO®/Europe-IQEC), Munich, Germany, Technical Digest (CD) (2009), paper CF1.3.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Energy scaling of mid-infrared femtosecond oscillators,” in Advanced Solid-State Photonics Conference, Technical Digest (CD) (Optical Society of America, 2007), paper WE7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic setup for characterization of mid-IR femtosecond pulse propagation in nonlinear fibers.

Fig. 2
Fig. 2

Experimental spectra of a 68-fs input pulse after propagation in 2.08 m ZBLAN fiber (a) and simulated spectra (b) for the same fiber length, D = 11 ps/nm⋅km, and γ = 0.65 W−1km−1.

Fig. 3
Fig. 3

Simulated (first row) and measured (second row) spectra, as well as simulated (third row) and measured (fourth row) autocorrelation traces of a 68-fs input pulse after propagation in 2.08 m ZBLAN fiber. Fiber parameters used for simulation are D = 11 ps/nm⋅km, and γ = 0.65 W−1km−1.

Fig. 4
Fig. 4

Measured and simulated pulse durations at the fiber output for a 68-fs pulse (a). Measured [17] and simulated dispersion for fiber with different core diameters (b).

Fig. 5
Fig. 5

Measured autocorrelation signals at fiber input (a) and output (b) for energy E = 1.7 nJ, corresponding to soliton number N = 1.03. (c) Spectra at the fiber input (filled grey area) and at the output (blue curve).

Fig. 6
Fig. 6

Simulated intensity (a) and spectrum (b) at the output of a 208-cm long fiber for a 110-fs input pulse and varying pulse energy. Simulated intensity (c) and spectrum (d) evolution inside the fiber for a 2-nJ 110-fs pulse calculated for fiber lengths up to 416 cm. The drift with respect to the local time frame and spectral asymmetry are due to the third-order dispersion.

Metrics